The equation of motion of a pendulum subjected to gravity reads:

$\displaystyle I\frac{d^2 \theta}{dt^2}=-m g \ell \sin \theta
$

By defining

$\displaystyle \omega_0 = \sqrt{\frac{mg\ell}{I}}
$

and by using:

$\displaystyle \dot \theta \equiv \frac{d \theta}{dt}, \quad \ddot \theta \equiv \frac{d^2 \theta}{dt^2}
$

this becomes:

$\displaystyle \ddot \theta = -\omega_0^2 \sin \theta$ (1)

For small oscillations (i.e. $ \sin \theta \approx \theta$ for small $ \theta$) the equation of motion becomes that of a harmonic oscillator:

$\displaystyle \ddot \theta = -\omega_0^2 \theta
$

with solution:

$\displaystyle \theta(t) = A \cos (\omega_0 t + \psi),
$

where $ A$ and $ \psi$ are determined by the initial conditions $ \theta(t=0) \equiv \theta_0$ and $ \dot \theta(t=0) \equiv \dot \theta_0$.

The period ($ \tau_0$) for small oscillations (small $ \theta$) is:

$\displaystyle \tau_0 = \frac{2\pi}{\omega_0}
$



$ \tau_0$ does not depend on $ \theta_0$ or $ \dot \theta_0$ because of the small angle approximation. Obviously this approximation breaks down at larger angles. An estimate of the deviation from harmonic motion can be obtained as follows. Write $ \ddot \theta$ as:

$\displaystyle \ddot \theta=\frac{d \dot \theta}{d\theta}\frac{d\theta}{dt}=\dot...
...c{d\dot\theta}{d\theta}=\frac{d}{d\theta}\left(\frac{\dot \theta^2}{2}\right)
$

Integrate (1)

$\displaystyle \int_0^{\dot \theta} d \left( \frac{\dot \theta^{'2}}{2} \right) = -\omega_0^2 \int_{\theta_0}^{\theta}\sin \theta' d\theta'
$

The solution is:

$\displaystyle \dot \theta^2=-2\omega_0^2(\cos\theta - \cos \theta_0)
$

Taking the square root on both sides and rearranging gives:

$\displaystyle \frac{d\theta}{\sqrt{\cos \theta - \cos \theta_0}}=\pm\sqrt{2}\omega_0dt
$

Integrate again:

$\displaystyle \sqrt{2}\omega_0\int_0^t dt' = -\int_{\theta_0}^\theta \frac{d\theta'}{\sqrt{\cos \theta' - \cos \theta_0}}
$

We take $ \theta_0$ to be positive. Since $ \theta<\theta_0$, the integral on the right hand side is negative. By means of the identity:

$\displaystyle \cos\theta = 1-2\sin^2 \frac{\theta}{2}
$

we get the integral:

$\displaystyle 2\omega_0 t = -\int_{\theta_0}^\theta \frac{d\theta'}{\sqrt{\sin^2(\theta_0/2)- \sin^2 (\theta'/2)}}
$

Rewrite by introducing the new variable $ \beta$ defined by:

$\displaystyle \sin \beta = \frac{\sin(\theta/2)}{\sin(\theta_0/2)}
$

The integral becomes:

$\displaystyle \omega_0 t = \int_{\beta}^{\pi/2} \frac{d\beta'}{\sqrt{1-\sin^2(\theta_0/2) \sin^2\beta'}}
$

Take $ \theta=0$ (so also $ \beta=0$) and integrate over a quarter of a period:

$\displaystyle \tau= \frac{4}{\omega_0} \int_0^{\pi/2} \frac{d\beta}{\sqrt{1-\sin^2(\theta_0/2) \sin^2\beta}}
$

This integral is known as the complete elliptic integral of the first kind. This integral does not have an analytical solution, but it can be approximated using a power series expansion. Note that in the approximation to small angles the period was $ \tau_0 = 2\pi/\omega_0$, giving the ratio:

$\displaystyle \frac{\tau}{\tau_0}= \frac{2}{\pi} \int_0^{\pi/2} \frac{d\beta}{\sqrt{1-\sin^2(\theta_0/2) \sin^2\beta}}
$

This integral can be expanded by a power series, so each term in the power series can be integrated separately:

$\displaystyle \frac{\tau}{\tau_0}$ $\displaystyle = \frac{2}{\pi} \int_0^{\pi/2}d\beta\left(1+\frac{1}{2}\sin^2\frac{\theta_0}{2}\sin^2\beta +\ldots \right)$    
  $\displaystyle = \frac{2}{\pi}\left[\beta + \frac{1}{4}\sin^2\left(\frac{\theta_0}{2}\right)\left(\beta-\frac{\sin 2\beta}{2}\right) +\ldots \right]_0^{\pi/2}$    
  $\displaystyle =\left[1+\frac{1}{4}\sin^2\left(\frac{\theta_0}{2}\right)\right] + \ldots$    

Again using the harmonic approximation for $ \theta_0$, approximate $ \sin^2(\theta_0/2)\approx \theta_0^2/4$ to get:

$\displaystyle \tau=\tau_0\left(1+\frac{\theta_0^2}{16}+\ldots\right)
$

Note that the period increases with $ \theta_0$. The fractional lengthening therefore becomes:

$\displaystyle \frac{\tau-\tau_0}{\tau_0}\approx\frac{\theta_0^2}{16}
$

The small angle approximation only differs $ 1.7\%$ for $ \theta_0$$ =30^o$.