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Complexity
Schrödinger: life substance is “aperiodic crystal” (modern formulation – Laughlin, 

Pines and others – glass)

Intuitive feeling: crystals are simple, biological structures are complex

Origin and evolution of  life: origin of  complexity? 



Complexity (“patterns”) in inorganic world

Stripe domains in ferromagnetic thin
films

Stripes on a beach in tide zone

Do we understand this? No, or, at least, not completely

Microstructures in metals
and alloys

Pearlitic
structure
in rail steel
(Sci Rep 9,
7454 (2019))



What is complexity?

• Something that we immediately recognize when we 
see it, but very hard to define quantitatively

• S. Lloyd, “Measures of complexity: a non-exhaustive 
list” – 40 different definitions

• Can be roughly divided into two categories:
- computational/descriptive complexities (“ultraviolet”)
- effective/physical complexities (“infrared” or inter-scale)



Computational and descriptive 
complexities

• Prototype – the Kolmogorov complexity:
the length of the shortest description (in a given 

language) of the object of interest
• Examples:
- Number of gates (in a predetermined basis) needed 

to create a given state from a reference one
- Length of an instruction required by file compressing 

program to restore image



Descriptive complexity

• The more random – the more complex:

>

White noise
970 x 485 pixels, gray scale, 253 Kb

Vermeer “View of  Delft”
750 x 624 pixels, colored, 234 Kb



Descriptive complexity II

The longer instruction – the more complex?

Homo sapiens - 3.1 
billion base pairs in 

DNA

Paris japonica - 150 
billion base pairs in 

DNA

≫



Effective complexity

Can we come up with a quantitative measure?..



Not a mere philosophical question

• What happens at the major 
evolutionary transitions?

• Why are simple neural 
algorithms capable of solving 
complex many-body problems?

• Why do many natural patterns 
appear to be universal?

→



Attempts: Self-Organized Criticality?
Per Bak: Complexity is criticality 

Some complicated (marginally stable) systems
demonstrate self-similarity and “fractal” 

structure
This is intuitively more complex behavior than

just white noise but can we call it 
“complexity”?

But: complexity is hierarchical! 
Our idea is dissimilarity at different 

scales



Multiscale structural complexity

The idea (from holographic complexity and common sense):
Complexity is dissimilarity at various scales

Let be a multidimensional pattern

its coarse-grained version (Kadanoff decimation, 
convolution with Gaussian window functions,…)

Complexity is related to distances between 

PNAS 117, 30241 (2020)



Structural complexity II

Different ways of  coarse-graining: average, “winner takes all” (Kadanoff
decimation), cut-off  in reciprocal space for Fourier image (Wilson RG…)



Art objects (and walls)

C = 0.1076 C = 0.2010 C = 0.2147 C = 0.2765

C = 0.4557 C = 0.4581 C = 0.4975 C = 0.5552



Other objects

C = 0.353 C = 0.152 C = 0.204 C = 0.260

C = 0.167 C = 0.316 C = 0.209

Photos by V. V. 
Mazurenko



Solution of  an ink drop in water
Entropy should grow, but complexity is not! And indeed…



Structural complexity: Ising model
Can be used as a numerical tool to find TC from finite-size

simulations

2D 3D

Different ways of  coarse-graining give different pictures but Tc
is always a cusp



Structural complexity: Magnetic patterns II

Simulations of  magnetic systems



Experimental observation of  self-induced spin 
glass state: elemental Nd 

Spin-polarized STM experiment, Radboud University



21
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Order from disorder

Glassy state at low T
and long-range order

at T increase

T=5K (a,c): spin glass
T=11K(b,d): (noncollinear) AFM



Order from disorder II

Phase transition at approx. 8K (seen via our complexity
measure)



Certification of quantum states

First make at least two complementary measurements, then analyze
the measurement results (relation to Bohr’s complementarity principle)



Certification of quantum states II
Two-dimensional map can be used to characterize the type of  quantum

states



Certification of quantum states III
One can characterize a type of  quantum states and, again, find

(quantum) critical point

1D chain; quantum critical point at 

Ising in transverse field



Certification of quantum states IV
The way to detect topological phases

Three different phases: trivial (I), topological (II), antiferromagnetic (III)

Phase diagram constructing from
dissimilarity (MSC), from maxima of

its derivatives

Dissimilarities with different basis
show different phase boundaries



Psychology of human visual perception 
We wanted definition of  complexity in agreement with our intuitive

understanding of  complexity – did we succeed? 
Multiscale structural dissimilarity in human perception of  visual complexity
Anna Kravchenko, Andrey Bagrov, MIK, Veronica Dudarev (in preparation)

To analyze: SAVOIAS: A Diverse, Multi-Category Visual Complexity Dataset
Elham Saraee, Mona Jalal, Margrit Betke; arXiv:1810.01771

https://arxiv.org/search/cs?searchtype=author&query=Saraee,+E
https://arxiv.org/search/cs?searchtype=author&query=Jalal,+M
https://arxiv.org/search/cs?searchtype=author&query=Betke,+M
https://arxiv.org/abs/1810.01771


Human visual perception II 

The best correlation is reached when making coarse-graining of  Fourier
images which can be interesting by itself



Human visual perception III 



Human visual perception IV 

What is missing in our definition? Contextual complexity (that is,
cultural references)



Human visual perception V 



Other applications –biology

Multilevel structural complexity was used to analyze observed
patterns in prokaryotic genomes vs predictions of  various models

To summarize the first part: computationally simple 
but useful concept

Nucleic Acids Research,  2024, 52,  11045–1105



Statistical mechanics of machine learning

Vanchurin, V. The world as a neural network. Entropy 22, 1210 (2020)

Vanchurin, V. Towards a theory of machine learning. Mach. Learn.: Sci. Technol. 2, 035012 (2021)

Based on the formalism

Applications to be discussed here:

M. I. Katsnelson and V. Vanchurin, Emergent quantumness in neural networks
FOUND PHYS 51, 94 (2021)

From Boltzmann’s time: problem of  derivation of  irreversible equations of  statistical
thermodynamics from reversible microscopic equations of  classical (or quantum) physics

We invert it: initially, equations of  machine learning are irreversible but “thermodynamic”
growth of entropy can be compensate due tp entropy decrease via learning

Entropy is a measure of  our ignorance of  the state of  the system: if we decrease our
ignorance we decrease entropy



Statistical mechanics of machine learning II

Learning dynamics: towards
optimization of F



Entropy production
Shannon entropy

The first term describes conventional entropy growth, the second is its decrease due
to learning.  

Near the learning equilibrium
(that is, in well-trained systems)



Entropy production II

where λ is a Lagrange multiplier This can be rewritten as 

De Raedt, H., Katsnelson, M.I., Michielsen, K.: Quantum theory as the most robust description of
reproducible experiments. Ann. Phys. 347, 45–73 (2014)

Further derivation is similar to that in “logical inference” approach 



Schrödinger equation



Schrödinger equation II

The difference is that the phase lives on a circle, not on an infinite straight line.

Last step: neural networks with changeable
number of neurons, grand canonical ensemble



Schrödinger equation III

Learning process in well-trained network (near equilibrium) with
changeable number of neurons is described by something which

looks like quantum equation

Emergent quantumness – contrary to ideas of  “quatum biology”, 
“quantum consciousness” etc. 

“Planck constant” is determined by characteristics of  the network 



Emergent criticality (scaling)
M. I. Katsnelson, V. Vanchurin, and T. Westerhout, Emergent scale invariance in neural networks
PHYSICA A 610, 128401 (2023)

Analytical consideration connects power-law scaling to existence of  “soft” directions:
neurons which state can be changed quite essentially without the effect on loss function

(cf “neutral evolution” in biology, see below)



Frustrations and complexity: Quantum case

How to find true ground state of  the quantum system?

In general, a very complicated problem (difficult to solve even for 
quantum computer!)

Idea: use of  variational approach and train neural network to find
“the best”  trial function (G. Carleo and M. Troyer, Science 355, 602 (2017))

Generalization problem: to train NN for relatively small basis (K
much smaller than total dim. of  quantum space) and find good

approximation to the true ground state



Frustrations and complexity: Quantum case II
Quantum S=1/2 Hamiltonian

NN and NNN interactions

24 spins, dimensionality of  Hilbert space 

Still possible to calculate ground state exactly
Training for K = 0.01 d (small trial set)



Frustrations and complexity: Quantum case III



Frustrations and complexity: Quantum case IV

It is sign structure
which is difficult to
learn in frustrated 

case!!!

Relation to sign
problem in QMC?!

"Somehow it seems to fill my head with ideas - only I don't exactly know 
what they are!” (Through the Looking-Glass, and What Alice Found There)



Further development

Communications Physics volume 6, Article number: 275 (2023)

Many-body quantum sign structures as non-glassy Ising models
Tom Westerhout, Mikhail I. Katsnelson, Andrey A. Bagrov

The idea: use machine learning to find amplitudes and then 
map onto efficient Ising model

When amplitudes are known the trial ground state energy < Ψ 𝐻𝐻 Ψ >

is a bilinear function of  signs si, and 
we have Ising optimization problem in 
K-dimensional space; K is very big but 

it turns out
that the model is not glassy and can be 

optimized without too
serious problems

https://www.nature.com/commsphys


Further development II

It turns out that even for initially
frustrated quantum spin models
the effective Ising model is not

frustrated, both couplings are small
and optimization is quite

efficient



Further development III

The quality of  optimization is quite 
robust with respect to uncertainties 

in amplitudes (overlap with the exact 
ground state)



Thermodynamics/Learning/Evolution

Energy landscape in physics is similar to fitness landscape in biology



Thermodynamics of  learning



Analogies with biological evolution
Can the change of  e.g. biological temperature switch fitness landscape
from  a few well-defined peaks to a glassy-like with many directions of

possible evolution?

Cambrian Exposion as an analog of  magnetic phase transitions
in neodymium?! 

Well… for me (as a physicist) it is a good place to stop



Fundamental principles of  evolution



Fundamental evolutionary phenomena



To summarize

Whether you can observe a thing or not
depends on the theory which you use. 

It is theory which decides what can be observed
(A. Einstein)

MANY THANKS FOR YOUR 
ATTENTION
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