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Complexity

Schrodinger: life substance is “aperiodic crystal” (modern formulation — Laughlin,
Pines and others — glass)

Intuitive feeling: crystals are simple, biological structures are complex

Origin and evolution of life: origin of complexity?



Complexity (“patterns”) in inorganic world
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Do we understand this? No, ot, at least, not completely



What is complexity?

 Something that we immediately recognize when we
see it, but very hard to define quantitatively

e S. Lloyd, “Measures of complexity: a non-exhaustive
list” — 40 different definitions

* Can be roughly divided into two categories:
- computational/descriptive complexities (“ultraviolet”)
- effective/physical complexities (“infrared” or inter-scale)



Computational and descriptive
complexities

* Prototype — the Kolmogorov complexity:

the length of the shortest description (in a given
language) of the object of interest

 Examples:

- Number of gates (in a predetermined basis) needed
to create a given state from a reference one

- Length of an instruction required by file compressing
program to restore image



Descriptive complexity

White noise Vermeer “View of Delft”
970 x 485 pixels, gray scale, 253 Kb 750 x 624 pixels, colored, 234 Kb



Descriptive complexity Il

The longer instruction —the more complex?

Paris japonica - 150 Homo sapiens - 3.1
billion base pairs in billion base pairs in
DNA DNA



Effective complexity

biological lite
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Can we come up with a quantitative measure?..



Not a mere philosophical question

 What happens at the major
evolutionary transitions?

 Why are simple neural
algorithms capable of solving
complex many-body problems?

 Why do many natural patterns
appear to be universal? 1

— __



Attempts: Self-Organized Criticality?

ERRBAK Per Bak: Complexity is criticality
Lbub Some complicated (marginally stable) systems
nature demonstrate self-similarity and “fractal”
works structure
This is intuitively more complex behavior than
just white noise but can we call it
“complexity”?
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molecule organelie cell tissue

But: complexity is hierarchical! By el (water) (nucleus) (neuron)  (nervous tissue)  (brain)

Our idea is dissimilarity at different
scales

organ system organism population community ecosystem biosphere
(nervous system) (sea lion) (colony) (giant kelp (southern California (Earth)
forest) coast)



Multiscale structural complexity

Multi-scale structural complexity of natural
patterns PNAS 117, 30241 (2020)

Andrey A. Bagrov®™!2, llia A. lakovlev™', Askar A. lliasov®, Mikhail |. Katsnelson®®, and Vladimir V. Mazurenko®

The idea (from holographic complexity and common sense):
Complexity is dissimilarity at various scales

Let f(z) be a multidimensional pattern

fa(z) its coarse-grained version (Kadanoff decimation,
convolution with Gaussian window functions,...)

Complexity is related to distances between fa(x) and fayaa(x)



Structural complexity 11

= [(fa(@)|fa+an (@)~ (f(2)lg(2)) = [p dzf(z)g(z)
L (@A) + (Frear @) frrar(@) ] = o1
i@ - @l arar@ — @), €72 x> [ GG, asdh 0

Different ways of coarse-graining: average, “winner takes all” (Kadanoff
decimation), cut-off in reciprocal space for Fourier image (Wilson RG...)



objects (and walls)

C = 0.4557 C = 0.4581 C = 0.4975 C = 0.5552




Other objects

Photos by V. V.
Mazurenko

C = 0.167 C = 0.316 C =0.209



Solution of an ink drop in water

Entropy should grow, but complexity is not! And indeed...

Complexity
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FIG. 7. The evolution of the complexity during the process
of dissolving a food dye drop of 0.3 ml in water at 31°C.



Structural complexity: Ising model

Can be used as a numerical tool to find 7 from finite-size
simulations
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Different ways of coarse-graining give different pictures but 7,
is always a cusp



Structural complexity: Magnetic patterns 11

Simulations of magnetic systems H = —JZ S.S,.—D Z[S“ X Spr] — Z BS7
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FIG. 4. (a) Magnetic field dependence of the complexity ob-
tained from the simulations with spin Hamiltonian containing
DM interaction with J =1, |D| =1, T = 0.02. The error bars
are smaller than the symbol size. (b) Complexity derivative
we used for accurate detection of the phases boundaries.



Experimental observation of self-induced spin
olass state: elemental Nd

Self-induced spin glass state in elemental
and crystalline neodymium

Umut Kamber, Anders Bergman, Andreas Eich, Diana lusan, Manuel Steinbrecher,
Nadine Hauptmann, Lars Nordstrom, Mikhail I. Katsnelson, Daniel Wegner*,
Olle Eriksson, Alexander A. Khajetoorians®

Science 368, 966 (2020)

Spin-polarized STM experiment, Radboud University




VI

The most important observation: aging. At thermocycling (or

cyling magnetic field) the magnetic state 1s not exactly reproduced

21
31-01-2025




Order from disorder

Thermally induced magnetic order from

glassiness in elemental neodymium NATURE PHYSICS | VOL 18 | AUGUST 2022 | 905-911

Benjamin Verlhac!, Lorena Niggli®’, Anders Bergman?, Umut Kamber®', Andrey Bagrov'?,
Diana lusan? Lars Nordstrém ©2, Mikhail I. Katsnelson®’, Daniel Wegner®", Olle Eriksson??
and Alexander A. Khajetoorians ®'~

Glassy state at low T
and long-range order
at T increase

Figure 2: Emergence of long-range multi-Q order from the spin-Q glass state at elevated

temperature. a,b. Magnetization images of the same region at T=5.1 Kand 11 K| respectively (k=
100 pA, a-b, scale bar: 50 nm). ¢,d. Corresponding Q-space images (scale bars: 3 nm), illustrating

the changes from strong local (i.e. lack of long-range) Q order toward multiple large-scale domains

T=5K (a,c): spin glass
() patterns (scale bar: 5 nm). The locations of these images is shown by the white squares in b. g,h. T: 1 1 I< (b) d) . ( n O n C O]_h n e a r) AFM

Display of multi-Q state maps of the two apparent domains in the multi-Q ordered phase, where (g)

with well-defined long-range multi-Q order. e,f. Zoom-in images of the diamond-like (e) and stripe-like



Order from disorder Il

5 6 7 8 9 10 11 12

Phase transition at approx. 8K (seen via our complexity
measure)



Certification of quantum states

Certification of quantum states with hidden structure of their
bitstrings npj Quantum Information (2022)8:41

O. M. Sotnikov 1, 1. A. lakovlev 1, A. A. Iliasovz, M. I. Katsnelson 2, A. A. Bagrov ?3 and V. V. Mazurenko (%)'™
a Quantum circuit b 1) o d Renormalization
l h (B BN N EEE BN BN N W |
0y — v, N overlaps
s b N S,
01 k=2 . | | _ Emmm lo
" 1 32
0y — z basis random basis k=3 [ [ [ | l
W)
1
10} — C  Bitstring array keresolved dissimilarity e = Qi = 5 (Okk + Okprirs)|
—_ e 01011010001110100110010001111010 l
—_— - o o
10) — shotl  shorz  shot3  Shotd dissimilarity D = ZD-’C
N/ k

Fig. 1 Protocol for computing dissimilarity of a quantum state. a First, one prepares a state on a quantum device and chooses the
measurement basis by applying rotational gates Uy to individual qubits. b In this paper, we work with ¢® and random bases whose Bloch
sphere representations are shown in the picture. We say that the set of measurements is performed in a random basis if, for each shot of
measurement, a random vector belonging to the highlighted sector of the Bloch sphere is uniformly sampled and the corresponding
parameters of gate Uy are applied. ¢ A number of measurements is performed and their outcomes — bitstrings of length N — are then stacked
together in a one-dimensional binary array of length N x Ng,ois that serves as a classical representation of the quantum state. d The array is
coarse-grained in several steps (indexed with k). Different schemes can be employed, but here we use plain averaging with fixed filter size A.
In the picture, blue and white squares in the top line correspond to ‘0" and ‘1’ bits in the array shown in (c), and black rectangles depict the
blocks where averaging occurs at every step of coarse-graining. Overlap-based dissimilarities D, between subsequent arrays are computed
and summed up to the overall dissimilarity D. See Methods section for more details.

First make at least two complementary measurements, then analyze
the measurement results (relation to Boht’s complementarity principle)



Certification of quantum states Il

Two-dimensional map can be used to characterize the type of quantum

states
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Fig. 10 Dissimilarity map. Low-dimensional representation of the
16-qubit quantum states studied in this work with respect to their
dissimilarity calculated in 0 and random bases. ¥y, Vs, Yhaar denote
the trivial |0)®", the singlet and the random quantum states,
respectively.



Certification of quantum states I/

One can characterize a type of quantum states and, again, find
(quantum) critical point

Ising in transverse field H=J35S +h > S
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Certification of quantum states IV

The way to detect topological phases — I (5S + 5 4 855)
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Psychology of human visual perception

We wanted definition of complexity in agreement with our intuitive
understanding of complexity — did we succeed?

Multiscale structural dissimilarity in human perception of visual complexity
Anna Kravchenko, Andrey Bagrov, MIK, Veronica Dudarev (in preparation)

To analyze: SAVOIAS: A Diverse, Multi-Category Visual Complexity Dataset

Elham Saraee, Mona Jalal, Margrit Betke; arXiv:1810.01771
w5 s

. ) 'IISTHEE.ISI]N § .
«  Multiple domains: Scenes, e
Advertisements, Infographics, Objects,

Interior design, Art, and Suprematism

«  Well-studied for other existing
complexity measures

« Obtained by crowdsourcing more than r y
37,000 pairwise comparisons of images,
rankings converted into 1-100 scale



https://arxiv.org/search/cs?searchtype=author&query=Saraee,+E
https://arxiv.org/search/cs?searchtype=author&query=Jalal,+M
https://arxiv.org/search/cs?searchtype=author&query=Betke,+M
https://arxiv.org/abs/1810.01771

Human visual perception Il

Choosing coarse-graining method

There are many ways to do coarse graining

Evidence suggests processing on early layers of visual cortex can be approximated by Fourier Transform
(Campbell and Robson 1968, Ochs 1979, Kulikowski and Bishop 1981, Olshausen 2003, Kesserwani 2002)

DFT: Inverse Fourier transform:
N—=1 N-1 — 1 Wt Wl .
F(k,1) = 1, 3) e™ (X f@b) =35 X X Flk1) e @9
i=0 =0 k=0 =0
. .
% “ )

The best correlation is reached when making coarse-graining of Fourier
images which can be interesting by itself



Human visual perception Ill

Natural scenes

objects scenes
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What does this imply?




Human visual perception IV

Comparison with existing measures

edge density compression ratio | number of regions | feature congestion| subband entropy MSSC max r
c
35 scenes 0.16 0.3 0.57 0.42 0.16 0.62 0.57
)
2
objects 0.28 0.16 0.29 0.3 0.1 0.46 0.3
% v suprematism 0.18 0.6 0.84 0.48 0.39 0.76 0.84
E ©
© i ) .
E - interior design 0.61 0.68 0.67 0.58 0.31 0.60 0.68
1
advertisements 0.54 0.56 0.41 0.56 0.54 0.52 0.56
—
_8 art 0.48 0.51 0.65 0.22 0.33 0.42 0.65
£
% infographics 0.57 0.55 0.38 0.52 0.61 0.38 0.61

From (Saree et al. 2018)

Surpasses state-of-the-art on natural scenes, falls below state-of-the-art methods for images conveying information

What is missing in our definition? Contextual complexity (that is,
cultural references)




Human visual perception V

Perceptual vs. conceptual complexity: art as a language

Outliers:

Visually straining but conceptually boring

Paintings identified as outliers, having been excluded from prediction by a threshold greater than two standard deviations, exhibited
the same distinctive visual characteristic: broad lines featuring contrasting colors (9). This artistic style can be visually straining,

however, it’s relatively simplistic in terms of information conveyed through it.



Other applications —biology

Nucleic Acids Research, 2024, 52, 11045-1105

Long range segmentation of prokaryotic genomes by gene age and functionality

Yuri I. Wolf, Ilya V. Schurov?, Kira S. Makarova!, Mikhail I. Katsnelson?, Eugene V. Koonin*

Multilevel structural complexity was used to analyze observed
patterns in prokaryotic genomes vs predictions of various models

To summarize the first part: computationally simple
but useful concept



Statistical mechanics of machine learning

Based on the formalism
Vanchurin, V. The world as a neural network. Entropy 22, 1210 (2020)
Vanchurin, V. Towards a theory of machine learning. Mach. Learn.: Sci. Technol. 2, 035012 (2021)

Applications to be discussed here:

M. I. Katsnelson and V. Vanchurin, Emergent quantumness in neural networks

FOUND PHYS 51, 94 (2021)

From Boltzmann’s time: problem of derivation of irreversible equations of statistical
thermodynamics from reversible microscopic equations of classical (or quantum) physics

We invert it: initially, equations of machine learning are irreversible but “thermodynamic”
¥, €q g y
growth of entropy can be compensate due tp entropy decrease via learning

Entropy is a measure of our ignorance of the state of the system: if we decrease our
ignorance we decrease entropy



Statistical mechanics of machine learning Il

Consider a learning system described by a coupled dynamics of trainable variables,
q. and non-trainable or hidden variables, x. In “epistomological” kind of approaches
[6, 14-16] one can identify the trainable variables with characteristics of a human
mind whereas the hidden variables represent an external world, but this identifica-
tion is not needed for our formal consideration which we will try to keep as general
as possible. In context of artificial neural networks the trainable variables determine
the weight matrix and bias vector, and the hidden variables represent the state vector
of neurons [13]. It is assumed that on the shortest time-scales the dynamics of the
trainable variables undergoes diffusion

opt. @) v 0 (,opl.@) @
o Z 991 (D dq; P q))

_ poPLY @F(t q) )
Z aQ’k( dqy Pt @

and the dynamics of hidden variables is only described through its free energy

4 q 2L09 dq, 0F (1, q)
dt ot = dr  dgq;
_0F(1,q) OF(1,q)
T T ; ( aqy >
Learning dynamics: towards dge _ OF,Q)

optimization of F dt oqy



Entropy production

Shannon entropy S (1) = — / d*q p(t,q)log (p(1,q))
ds, (1) 0 log(p) op
g K K
__ _ log(p) 22
& /d A —— /d q Og(p)at
d

op
= dX d¥qg 1 e
- qp— / q log(p) 5

0 op oF
=— [ d%q log(p) ) — (D -7 p)
/ Z dq, \ 90q,  0q;
op oF
qu ( ) -y / qu _—
/ Z 94, Z,:‘ 0qy. 94

The first term describes conventional entropy growth, the second is its decrease due

to learning.

Near. the learning equilibrium ds,(t) / i \/_( D Z )

(that 1s, in well-trained systems) dt



Entropy production Il

T ds T OF oF\ v
Sp.F, A= | di—=+21 ] didgp| = — = |,
p. F, 2] /0 z‘dt+/0 tqp(dt+y§(qu)+€
T oF\ .,V
=/ drqu\/E( 4DZ—+A—+MZ(—) +AE)\/_,
0

k aqk
(7)
where the total time-averaged free energy production pre unit time step € is
V(g) = —<eiF(z ) 3
q - dt ? q 1’. ( )
where A is a Lagrange multiplier This can be rewritten as

i P ) | 15 (3D
Slp,F,h] = 6/0 dtd C]\/_( zmqui-'- ot +2m - ( gy, ) +V>\/E
9)

where
- €
m = 2]/, (10)
and
h=ey )22 (11)
Y4

Further derivation is similar to that in “logical inference” approach
De Raedt, H., Katsnelson, M.I., Michielsen, K.: Quantum theory as the most robust description of
reproducible experiments. Ann. Phys. 347, 45-73 (2014)



Schrodinger equation

The main difference between (7) and (9) is that instead of solving the equations
for p, F and A, we are now solving them for p, F and #. The optimal solutions are
obtained by setting all possible variations of (9) to zero

0 d n 02

—S[p,F,h] =- dt d®g— —\/p=0

—-Slp. F. 1] fo qu/ﬁ Ek aqg\/‘; (12)
5 0 1 9 [ 0(cF)

2 S[p.F.h] = - = ——z— =0

oF p | 0tp m 4 qu< g, p) (13)

5 21wV aer) 1 d(eF)\ >
5>l Fohl = - D + +—2( ) +V =0

np & ag ot 2m 4\ og
(14)
d
<55q>t =0, (15)
and by equations (13) and (14), which are the Madelung hydrodynamic equations
[20]

0 0

pidal Zk: 5: eP) (16)

2

9 o 19 n o VP

gy =- L -=Llv-L

a[uj zkl Uy a0 U m aqj( m Z 02 ) (17)
with velocity of the fluid



Schrodinger equation Il

It is well known that the Madelung equations can be derived from the Schrodinger
equation

0 n> 0
—inly=( Y vy

where the wave function i8 defined as
F
p = pexp(%). (20)
The difference is that the phase lives on a circle, not on an infinite straight line.

Last step: neural networks with changeable

. F=F+ un VneZ
number of neurons, grand canonical ensemble TH ne
s
h=+ " (26)

By imposing the condition (26) on 72 in (22) we arrive at the Schrodinger action

T 2 *
S|¥Y] = i/ drd®q ( L 2 oV oF _ ih‘P*@ + V‘P*‘P) (27)
0

€ 2m & dq; 0q; ot




Schrodinger equation Il

Learning process in well-trained network (near equilibrium) with
changeable number of neurons is described by something which
looks like quantum equation

Emezrgent quantumness — contrary to ideas of “quatum biology”,
“quantum consciousness’ etc.

“Planck constant” is determined by characteristics of the network



Emergent criticality (scaling)

M. I. Katsnelson, V. Vanchurin, and T. Westerhout, Emergent scale invariance in neural networks

PHYSICA A 610, 128401 (2023)

M.I. Katsnelson, V. Vanchurin and T. Westerhout Physica A 610 (2023) 128401

(| wi(t +1) —w,(1)])
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1077 1078 107° 10”
[wit+1) — w,(t)]

Fig. 2. Distribution of local fluctuations wj(t + 1) — wj(t) for a few randomly selected weights. We have checked that the distribution is symmetric
and for clarity show only |wj(t + 1) — wj(t)|. Labels 10, 21, 105, and 110 indicate different values of i, i.e. different weights. Weights 10 (blue) and
21 (orange) come from the first layer, and 105 (green) and 110 (purple) — from the second. For each i, more than 107 data points were used to
calculate the distribution.
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Analytical consideration connects power-law scaling to existence of “soft” directions:
neurons which state can be changed quite essentially without the effect on loss function
(ct “neutral evolution” in biology, see below)



Frustrations and complexity: Quantum case

Generalization properties of neural network | (2020)11:1593
approximations to frustrated magnet ground states

Tom Westerhouﬂm, Nikita Astrakhantsev2'3'4m, Konstantin S. Tikhonov 5'6'7M, Mikhail I. Katsnelson'® &

Andrey A. Bagroy'%°®

How to find true ground state of the quantum system?

In general, a very complicated problem (difficult to solve even for
quantum computetr!)

Idea: use of variational approach and train neural network to find
“the best” trial function (G. Carleo and M. Troyer, Science 355, 602 (2017))

K K
Yos) = D_wilS) = D _slwillS)
i=1 i=1
Generalization problem: to train NN for relatively small basis (K
much smaller than total dim. of quantum space) and find good
approximation to the true ground state



Frustrations and complexity: Quantum case 11

Quantum S=1/2 Hamiltonian H=J, Z‘}a ®6,+ ], Z G, 26,
NN and NNN interactions (ab) {{a,b))
a b c

Fig. 1 Lattices considered in this work. We studied three frustrated antiferromagnetic Heisenberg models: a next-nearest neighbor J, —J/> model on square
lattice; b anisotropic nearest-neighbor model on triangular lattice; ¢ spatially anisotropic Kagome lattice. In all cases J; = O corresponds to the absence of
frustration.

24 spins, dimensionality of Hilbert space d = C24 ~ 2.7 - 10°

Still possible to calculate ground state exactly
Training for K =0.01 d (small trial set)



Frustrations and complexity: Quantum case 111

Kagome lattice

Square lattice Triangular lattice
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Fig. 2 Optimization results for 24-site clusters obtained with supervised learning and stochastic reconfiguration. Subfigures a-c were obtained using
supervised learning of the sign structure. Overlap of the variational wave function with the exact ground state is shown as function of J;/J; for square a,
triangular b, and Kagome c lattices. Overlap was computed on the test dataset (not included into training and validation datasets). Note that generalization
is poor in the frustrated regions (which are shaded on the plots). 1-layer dense, 2-layer dense, and convolutional neural network (CNN) architectures are
described in Supplementary Mote 1. Subfigures d-f show overlap between the variational wave function optimized using Stochastic Reconfiguration and the
exact ground state for square, triangular, and Kagome lattices, respectively. Variational wave function was represented by two two-layer dense networks. A
correlation between generalization quality and accuracy of the SR method is evident. On this figure, as well as on all the subsequent ones (both in the main
text and Supplementary Notes 1 and 2), error bars represent standard error (SE) obtained by repeating simulations multiple times.



Frustrations and complexity: Quantum case IV
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Fig. 4 Generalization of signs and amplitudes. \We compare generalization
quality as measured by overlap for learning the sign structure (red circles)
and amplitude structure (green squares) for 24-site Kagome lattice for
two-layer dense architecture. Note that both curves decrease in the
frustrated region, but the sign structure is much harder to learn.

It is sign structure

which is difficult to

learn in frustrated
case!!!

Relation to sign
problem in QMC?!

"Somehow it seems to fill my head with ideas —only I don't exactly know
what they are!” (Through the Looking-Glass, and What Alice Found There)



Further development

Many-body quantum sign structures as non-glassy Ising models
Tom Westerhout, Mikhail I. Katsnelson, Andrey A. Bagrov

Communications Physics volume 6, Article number: 275 (2023)

The idea: use machine learning to find amplitudes and then
map onto efficient Ising model

Wos) = D_wilS) = D_slwillS)

When amplitudes are known the trial ground state energy < W|H|Y >

is a bilinear function of signs s, and

- -

. . : : a) b).-Tlm e
K-dimensional space; K is very big but — ;e y
\ |'T1N> e g |\'
o © .

we have Ising optimization problem in

it turns out
that the model is not glassy and can be

optimized without too N .’

. Real lattice Hilbert space Ising model
serious problems


https://www.nature.com/commsphys
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Probability that the
coupling is not frustrated

Further development I1
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It turns out that even for initially
frustrated quantum spin models
the effective Ising model 1s not

frustrated, both couplings are small
and optimization is quite
etficient



Sign overlap

Further development 111
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The quality of optimization is quite

robust with respect to uncertainties
in amplitudes (overlap with the exact

ground state)



Toward a theory of evolution as multilevel learning

Vitaly Vanchurin®®, Yuri I. Wolf*®, Mikhail I. Katsnelson(, and Eugene V. Koonin®"

Thermodynamics of evolution and the origin of life

Vitaly Vanchurin®®, Yuri I. Wolf*@®, Eugene V. Koonin®'@®, and Mikhail I. Katsnelson®"

Table 1.

Thermodynamics

Thermodynamics/Learning/’

Machine learning

Hvolution

PNAS 2022 Vol. 119 No. 6 e2120037119

PNAS 2022 Vol. 119 No. 6 e2120042119

Corresponding quantities in thermodynamics, machine learning, and evolutionary biology

Evolutionary biology

H(x, q)

S(q)
U(q)
Z(T,q)
F(T.q)

Q(T, )
T or 7

U or

Ne or N

Microscopic physical degrees of
freedom

Generalized coordinates (e.g.,
volume)
Energy

Entropy of physical system
Internal energy

Partition function
Helmholtz free energy

Grand potential, Q, (7, .#)
Physical temperature, .7
Chemical potential, .#

Number of molecules, N
Absent in conventional physics

Variables describing training
dataset (nontrainable
variables)

Weight matrix and bias vector
(trainable variables)

Loss function

Entropy of nontrainable variables
Average loss function

Partition function

Free energy

Grand potential

Temperature

Absent in conventional machine
learning

Number of neurons, N

Number of trainable variables

Variables describing environment

Trainable variables (genotype,
phenotype)
Additive fitness,

H(x,q) =—-Tlogf(q)
Entropy of biological system
Average additive fitness
Macroscopic fitness
Adaptive potential (macroscopic

additive fitness)

Grand potential, Q4 (T, )
Evolutionary temperature, T
Evolutionary potential,

Effective population size, N,
Number of adaptable variables

Energy landscape in physics is

similar to fitness landscape in biology



Thermodynamics

Consider an arbitrary learning system described by trainable
variables q and nontrainable variables x, such that nontrainable
variables undergo stochastic dynamics and trainable variables
undergo learning dynamics. In the limit when the nontrainable
variables x have already equilibrated, but the trainable variables
q are still in the process of learning, the conditional probability
distribution p(x|q) over nontrainable wvariables x can be
obtained from the maximum entropy principle whereby Shan-
non (or Boltzmann) entropy

O (2.1]

is maximized subject to the appropriate constraints on the sys-
tem, such as average loss

Jde H(x.q)p(x|q) = U(q) [2.2]

and normalization condition

Jde pxlq) = 1. [2.3]

Its simplicity notwithstanding, the condition [2.2] is crucial.
This condition means, first, that learning can be mathematically
described as minimization of some function U(q) of trainable
variables only, and second that this function can be represented
as the average of some function H(x,q) of both trainable, q,
and nontrainable, x, variables over the space of the latter. Eq.

of learning

We postulate that a system under consideration obeys the
maximum entropy principle but is also learning or evolving by
minimizing the average loss function U(q) [2.2]. The corre-
sponding maximum entropy distribution can be calculated using
the method of Lagrange multipliers, that is, by solving the fol-
lowing variational problem:

5(S—p(Ja¥y Hiy.ap(vla) ~U) ~ v(Jd"y plsla) ~ 1))
op(xlq)

=0,
[24]

where f# and v are the Lagrange multipliers which impose,
respectively, the constraints [2.2] and [2.3]. The solution of
[2.4] is the Boltzmann (or Gibbs) distribution

—logp(x|q) — 1 —pH(x,q) —v=0
_ _exp(—pH(x,q)) [2.5]
p(xlq) =exp (—pH(x) — 1 —v) = W’

where

Z(p,q) =exp(l+v)= Jde exp (—pH(x,q)) = Jde @(x,q)
[2.6]

is the partition function (Z stands for German Zustandssumme,
sum over states).

Formally, the partition function Z(f,q) is simply a normaliza-
tion constant in Eq. 2.5, but its dependence on f and q contains a
wealth of information about the learning system and its environ-
ment. For example, if the partition function is known, then the
average loss can be easily calculated by simple differentiation

Jde H(x,q)exp (—pH(x.q)) 3
Ulg) = = fafﬁlogZ(/f,q)
Jd”x exp (—pH(x,q))

d
=—(pF(p 2.7
aﬁ(/ (6.q)). [2.7]
where the biological equivalent of free energy is defined as

"= -TlogZ = —p ogZ =U — TS [2.8]



Analogies with biological evolution

Can the change of e.g. biological temperature switch fitness landscape
from a few well-defined peaks to a glassy-like with many directions of
possible evolution?

Au.v!.'l"fllian (.](Jll.")."za[ of ‘Z()iJl(Jg\:
Explamlng the Cﬂlﬂbfl&ﬂ http://dx.doi.org/10.1071/2Z013052
“Explosion” of Animals The evolution of morphogenetic fitness landscapes:
' conceptualising the interplay between the developmental
P 8 play P
Charles R. Marshall and ecological drivers of morphological innovation
Annu. Rev. Earth Planet. Sci.
2006. 34:355-84 Charles R. Marshall

Cambrian Exposion as an analog of magnetic phase transitions
in neodymium?!

Well... for me (as a physicist) it is a good place to stop



Fundamental principles of evolution

What are the requirements for a universe to be observable?
The possibility to make meaningful observations implies a
degree of order and complexity in the observed universe emerg-
ing from evolutionary processes, and such evolvability itself
seems to be predicated on several fundamental principles. It
has to be emphasized that “observation” and “learning” here
by no means imply “mind” or “consciousness” but a far more
basic requirement. To learn and survive in an environment, a
system (or observer) must predict, with some minimal but suffi-
cient degree of accuracy, the response of that environment to
various actions and to be able to choose such actions that are
compatible with the observer’s continued existence in that envi-
ronment. In this sense, any life-form is an observer, and so are
even inanimate systems endowed with the ability of feedback
reaction. In this most general sense, observation is a prerequi-
site for evolution. We first formulate the basic principles under-
lying observability and evolvability and then, give the pertinent
comments and explanations.

P1. Loss function. In any evolving system, there exists a loss
function of time-dependent variables that is minimized during
evolution.

PNAS
https://doi.org/10.1073/pnas.2120037119

P2. Hierarchy of scales. Evolving systems encompass multiple
dynamical variables that change on different temporal scales
(with different characteristic frequencies).

P3. Frequency gaps. Dynamical variables are split among dis-
tinct levels of organization separated by sufficiently wide fre-
quency gaps.

P4. Renormalizability. Across the entire range of organization
of evolving systems, a statistical description of faster-changing
(higher-frequency) variables is feasible through the slower-
changing (lower-frequency) variables.

P5. Extension. Evolving systems have the capacity to recruit
additional variables that can be utilized to sustain the system
and the ability to exclude variables that could destabilize the
system.

P6. Replication. In evolving systems, replication and elimina-
tion of the corresponding information-processing units (IPUs)
can take place on every level of organization.

P7. Information flow. In evolving systems, slower-changing lev-
els absorb information from faster-changing levels during
learning and pass information down to the faster levels for pre-
diction of the state of the environment and the system itself.

Vanchurin et al.
Toward a theory of evolution as multilevel learning



Fundamental evolutionary phenomena

E1. IPUs. Discrete IPUs (that is, self- vs. nonself-differentiation
and discrimination) exist at all levels of organization. All bio-
logical systems at all levels of organization, such as genes, cells,
organisms, populations, and so on up to the level of the entire
biosphere, possess some degree of self-coherence that separates
them, first and foremost, from the environment at large and
from other similar-level IPUs.

E2. Frustration. All complex, dynamical systems face multidi-
mensional and multiscale optimization problems, which generi-
cally lead to frustration resulting from conflicting objectives at
different scales. This is a key, intrinsic feature of all such sys-
tems and a major force driving the advent of increasing multile-
vel complexity (12). Frustration is an extremely general physical
phenomenon that is by no account limited to biology but
rather, occurs already in much simpler physical systems, such as
spin and structural glasses, the behavior of which is determined
by competing interactions so that a degree of complexity is
attained (31, 32).

E3. Multilevel Hierarchy. The hierarchy of multiple levels of orga-
nization is an intrinsic, essential feature of evolving biological
systems in terms of both the structure of these systems (genes,
genomes, cells, organisms, kin groups, populations, species,
communities, and more) and the substrate the evolutionary
forces act upon.

E4. Near Optimality. Stochastic optimization or the use of sto-
chastic optimization algorithms is the only feasible approach to
complex optimization, but it guarantees neither finding the
globally optimal solution nor retention of the optimal configu-
ration when and if it is found. Rather, stochastic optimization
tends to rapidly find local optima and keeps the system in their
vicinity, sustaining the value of the loss function at a near-
optimal level.

E5. Diversity of Near-Optimal Solutions. Solutions on the loss
function landscapes that arise in complex optimization prob-
lems span numerous local peaks of comparable heights.

E6. Separation of Phenotype from Genotype. This quintessential
feature of life embodies two distinct (albeit inseparable in known
organisms) symmetry-breaking phenomena: 1) separation
between dedicated digital information storage media (stable,
rarely updatable, tending to distributions with discrete values) and
mostly analog processing devices and 2) asymmetry of the infor-
mation flow within the [PUs whereby the genotype provides
“instructions” for the phenotype, whereas the phenotype largely
loses the ability to update the genotype directly. The separation
between the information storage and processing subsystems is a
prerequisite for efficient evolution that probably emerged early on
the path from prebiotic entities to the emergence of life.

E7. Replication. Emergence of long-term digital storage devices,
that is genomes consisting of RNA or DNA (E6) provides for
long-term information preservation, facilitates adaptive reactions
to changes in the environment, and promotes the stability of IPUs
to the point where (at least in chemical systems) it is limited by
the energy of the chemical bonds rather than the energy of ther-
mal fluctuations. Obviously, however, as long as this information
is confined to a single IPU, it will disappear with the inevitable
eventual destruction of that IPU. Should this be the case, other
IPUs of similar architecture would need to accumulate a compa-
rable amount of information from scratch to reach the same level
of stability. Thus, copying and sharing information are essential
for long-term (effectively, indefinite) persistence of IPUs.

E8. Natural Selection. Evolution by natural selection (Darwinian
evolution) arises from the combination of all the principles and
phenomena described above.

E9. Parasitism. Parasites and host—parasite coevolution are ubiqui-
tous across biological systems at multiple levels of organization
and are both intrinsic to and indispensable for the evolution
of life.

E10. Programmed Death. Programmed (to various degrees) death
is an intrinsic feature of life.



To summarize

Whether you can observe a thing or not
depends on the theory which you use.
It is theory which decides what can be observed

MANY TE

(A. Einstein)

ANKS FOR YOUR

ATTENTION
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