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- Introduction

- Pattern formation in physics: magnetic patterns as an example
- Multiscale structural complexity

- Self-induced glassiness and beyond: the role of frustration

-  Experimental realization: elemental Nd

- Complexity of quantum frustrated systems

- Frustrations and complexity beyond materials science: machine
learning, biological evolution and all that

Intuitive feeling: crystals are simple, biological structures are complex



Complexity (“patterns’™) in inorgan
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Stripe domains in ferromagnetic thin
films

(Sci Rep 9,
i 7454 (2019))
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Do we understand this? No, or, at least, not completely



Magnetic patterns

Example: strip domains in thin ferromagnetic films
PHYSICAL REVIEW B 69, 064411 (2004)

Magnetization and domain structure of bee FegNiyo/ Co (001) superlattices

R. Brucas, H. Hafermann, M. I. Katsnelson, I. L. Soroka, O. Eriksson, and B. Hjorvarsson
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FIG. 2. The MFM images of the 420 nm thick FegNi;g/Co superlattice at different externally applied in-plane magnetic fields:

(a)—virgin (nonmagnetized) state; (b), (c). (d)—increasing field 8.3, 30, and 50 mT; (e), (f). (g) —decreasing field 50, 30, 8.3 mT: (h)—in
remanent state.




Magnetic patterns 111

Europhys. Lett., 73 (1), pp. 104-109 (2006)
DOI: 10.1209/ep1/i2005-10367-8

Topological defects, pattern evolution, and hysteresis
in thin magnetic films

P. A. PRuDKOVSKII!, A. N. RuBTsov! and M. I. KATSNELSON 2
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Competition of exchange interactions (want homogeneous
ferromagnetic state) and magnetic dipole-dipole interations
(want total magnetization equal to zero)



Magnetic patterns IV

Classical Monte Carlo simulations

Fig. 2 — Snapshots of the stripe-domain system with the two-component order parameter at several
points of the hysteresis loop for 3 = 1. The magnetic field is h = 0, h = 0.3, and h = 0.6, from left
to right. The inset shows the color legend for the orientation of local magnetization.

We know the Hamiltonian and it is not very complicated

How to describe patterns and how to explain patterns?



What is complexity?

 Something that we immediately recognize when we
see it, but very hard to define quantitatively

“I know it when | see it” (US Supreme Court Justice Potter
Stewart, on obscenity)

e S. Lloyd, “Measures of complexity: a non-exhaustive
list” — 40 different definitions

* Can be roughly divided into two categories:
- computational/descriptive complexities (“ultraviolet”)
- effective/physical complexities (“infrared” or inter-scale)



Our definition: Multiscale structural complexity

Multi-scale structural complexity of natural
patterns PNAS 117, 30241 (2020)

Andrey A. Bagrov™"' 2| llia A. lakovlev™', Askar A. lliasov®, Mikhail I. Katsnelson®", and Vladimir V. Mazurenko"”

The idea: Complexity is dissimilarity at various scales

f(z) multidimensional pattern fa(x) its coarse-grained version

Complexity is related to distances between fa(z) and faqa(z)

~ 7A@ an ()= (F(@)lg(@)) = [p dzf()g(x)
((Fa(@)|fa(z)) + (Fasran(z)| faran(z))) | =
: {maﬁ f|(%|% A, as dA — 0
[ {faran () — fa (@) faran(z) — fal2));

bo| =



Multiscale structural complexity 11

Solution of ink drop in watet: Magnetic patterns

Entropy should grow but complexity is not 5 _ 7Y 8.8, DY [S.xS.]-Y BS;
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FIG. 7. The evolution of the complexity during the process

of dissolving a food dye drop of 0.3 ml in water at 31°C. FIG. 4. (a) Magnetic field dependence of the complexity ob-

tained from the simulations with spin Hamiltonian containing
DM interaction with J =1, |D| =1, T' = 0.02. The error bars

And many Other applications inCIUding are smaller than the symbol size. (b) Complexity derivative
. we used for accurate detection of the phases boundaries.
biology and psychology
Nucleic Acids Research, 2024, 52, 11045-11059 \D - Derivative dete Cts Chan ges Of re gime

https://doi.org/10.1093/nar/gkae745
Advance access publication date: 28 August 2024

Genomics

Long range segmentation of prokaryotic genomes by gene
age and functionality

Yuri I. Wolf ©, llya V. Schurov ©2, Kira S. Makarova ©', Mikhail I. Katsnelson ©2 and
Eugene V. Koonin ©@1-*



Competing interactions and self-induced spin
olasses

Special class of patterns: “chaotic” patterns

Hypothesis: a system wants to be
modulated but cannot decide in which

PHYSICAL REVIEW B 69, 064411 (2004) . .
direction
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where mg is a two-dimensional Fourier component of the
magnetization density. At the same time. the exchange en-
ergy can be written as

1
Eexcn=x afE gzmqm_q._ (14)
= q

s0 there is a finite value of the wave vector g=¢* found
from the condition

d| 1-e%® 1 |
21 +5aq” |=0 (15)

dg\”~ q



Self-induced spin glasses 11

PRL 117, 137201 (2016) PHYSICAL REVIEW LETTERS 23 SEPTEMBER 2016

PHYSICAL REVIEW B 93, 054410 (2016)

Self-Induced Glassiness and Pattern Formation in Spin Systems Subject

Stripe glasses in ferromagnetic thin films to Long-Range Interactions

Alessandro Principi* and Mikhail I. Katsnelson Alessandro Principi and Mikhail I. Katsnelson

Development of idea of stripe glass, J. Schmalian and P. G. Wolynes, PRL 2000

Glass: a system with an energy landscape characterizing by
infinitely many local minima, with a broad distribution of batriets,
relaxation at “any” time scale and aging (at thermal cycling you
never go back to exactly the same state)

d
u‘u‘/\m]
L) equilibrium and non-equilibrium,
. 7 ( opportunity for history and

%8 % % memory (“stamp collection”)

s 2 Picture from P. Charbonneau et al,

DOI: 10.1038/ncomms4725

Intermediate state between




Selt-induced spin glasses 111
One of the ways to describe: R. Monasson, PRL 75, 2847 (1995)
Hylm, Al = H[m,A] + g f dr|m(r) — ﬁr(r}]z

The second term describes attraction of our physical field m(r)

to some external field ¥ (r)

If the system an be glued, with infinitely small interaction g, to macroscopically
large number of configurations it should be considered as a glass

Then we calculate F, = J I}%ﬂg][ ; 51‘#] and see whether the limits

Fog=limy_lim, .o F, and F =hlmg olimy_ F; are different

No disorder is needed (contrary to

If vyes, this is self-induced glass . . .
e . traditional view on spin glasses)



Selt-induced spin glasses IV

PHYSICAL REVIEW B 93, 054410 (2016) Hlm, 1] = fdr{l[ﬁ,-mj(r}]z . ng(r} —2h(r) - m(r))
Stripe glasses in ferromagnetic thin films

Alessandro Principi* and Mikhail 1. Katsnelson
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Self-consistent screening approximation for spin propagators
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Self-induced spin glasses V
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Glassiness without disorder?

Giorgio Parisi, Nobel Prize in physics 2021
"for the discovery of the interplay of disorder
and fluctuations in physical systems from atomic
to planetary scales."

Actually, disorder may be not needed, frustrations are enough
(self-induced spin glass state in Nd)

Can we have something more or less exactly solvable?! — Yes!

PHYSICAL REVIEW B 109, 144414 (2024)

Frustrated magnets in the limit of infinite dimensions: Dynamics and disorder-free glass transition

Achille Mauri®" and Mikhail L. Katsnelson®”
Institute for Molecules and Materials, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

M (Received 16 November 2023: accepted 27 March 2024; published 18 April 2024)

The prototype theory: dynamical mean-field theory (DMFT) for strongly
correlated systems (Metzner, Vollhardt, Georges, Kotliar and others)



(Glassiness in infinite dimensions

, 1 afl oo of
Frustrations are necessary H = 3 Z J.ij S; Sj + Z V(Si)
(W) v
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The simplest frustrated model: f&'ﬁ (E) = 5a'5f(8) f(e‘:?) = J(EZ — 1)

Mean-tield ordering temperature tends to zero at d — o0 in this model



Glassiness in infinite dimensions 11

Cavity construction and mapping on effective single impurity

Purely dissipative Langevin dynamics Si = —8; X (S; x (N; + 1))
OH

B - . af of o o

(W () (1)) = 2kpT65,;6(t —t')

J
Exactly mapped to a single-impurity dynamics with nonlocal in time “memory function”

Edwards-Anderson criterion of glassiness (local spin-spin correlation function tends
to nonzero value in the limit of infinite time difference)

3qea(T) = limje_s|meo (S%(1) 5% (1))



nonzero below the glass transition temperature

Glassiness 1in infinite dimensions I11

Isotropic model f(E) = J(E?’ — 1)

T, =~ 0.0103|J|/kg

First-order transition dEA (Tg) ~ 0.2575
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Glassiness without disorder is
theoretically possible!



Experimental observation of self-induced spin
olass state: elemental Nd

Self-induced spin glass state in elemental

d crystalli dymi
and crystalline neodymium Science 368, 966 (2020)

Umut Kamber, Anders Bergman, Andreas Eich, Diana lusan, Manuel Steinbrecher,
Nadine Hauptmann, Lars Nordstrom, Mikhail I. Katsnelson, Daniel Wegner*,
Olle Eriksson, Alexander A. Khajetoorians*

Spin-polarized STM experiment, Radboud University

Magnetic structure: local correlations
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. c 3 e..v:\. H o . Mz

The most important observation: aging. At thermocycling (or
cyling magnetic field) the magnetic state is not exactly reproduced



Ab initio: magnetic interactions in bulk Nd

Method: magnetic force theorem (Lichtenstein, Katsnelson, Antropov, Gubanov
JMMM 1987)
Calculations: Uppsala team (Olle Eriksson group)

a hcp
06" o dhcp cubic
% dhcp hexagonal
047
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* Dhcp structure drives competing AFM interactions

* Frustrated magnetism o
3/23/2025



Spin-glass state in Nd: spin dynamics
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To compare: the same for prototype
disordered spin-glass Cu-Mn

B. Skubic et al, PRB 79, 024411 (2009)



Order from disorder

Thermally induced magnetic order from

glassiness in elemental neodymium NATURE PHYSICS | VOL 18 | AUGUST 2022 | 905-911

Benjamin Verlhac', Lorena Niggli©®', Anders Bergman?, Umut Kamber®', Andrey Bagrov'?,
Diana lusan? Lars Nordstrom ©2, Mikhail I. Katsnelson®', Daniel Wegner®', Olle Eriksson??
and Alexander A. Khajetoorians '

Glassy state at low T
and long-range order
at T increase

Figure 2: Emergence of long-range multi-Q order from the spin-Q glass state at elevated

temperature. a,b. Magnetization images of the same region at 7= 5.1 K and 11 K, respectively (k=
100 pA, a-b, scale bar: 50 nm). ¢,d. Corresponding Q-space images (scale bars: 3 nm), illustrating

the changes from strong local (i.e. lack of long-range) Q order toward multiple large-scale domains

T=5K (a,c): spin glass
(f) patterns (scale bar: 5 nm). The locations of these images is shown by the white squares in b. g.h. T: 1 1 I{(b,d) : <nonco]linear> AFM

Display of multi-Q state maps of the two apparent domains in the multi-Q ordered phase, where (g)

with well-defined long-range multi-Q order. e f. Zoom-in images of the diamond-like () and stripe-like



Order from disorder Il
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Phase transition at approx. 8K (seen via “complexity”
measures) — right one is our multiscale structural
complexity!



Order from disorder Il
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Frustrations and complexity: Quantum case

Generalization properties of neural network | (2020)11:1593
approximations to frustrated magnet ground states

Tom Westerhouﬂm, Nikita Astrakhantsev2'3'4m, Konstantin S. Tikhonov 5'6'7M, Mikhail I. Katsnelson'® &

Andrey A. Bagrov!®?®

How to find true ground state of the quantum system?

In general, a very complicated problem (difficult to solve even for
quantum computer!)

Idea: use of variational approach and train neural network to find
“the best” trial function (G. Carleo and M. Troyert, Science 355, 602 (2017))

K K
Wos) = D_wilSi) = D _silwillS:)
i=1 i=1
Generalization problem: to train NN for relatively small basis (K
much smaller than total dim. of quantum space) and find good
approximation to the true ground state



Frustrations and complexity: Quantum case 11

Quantum $=1/2 Hamiltonian H=1,) 6,06,+], Y 6,26,
NN and NNN interactions (ab) ({aib))

Fig. 1 Lattices considered in this work. We studied three frustrated antiferromagnetic Heisenberg models: a next-nearest neighbor J,—J/> model on square
lattice; b anisotropic nearest-neighbor model on triangular lattice; ¢ spatially anisotropic Kagome lattice. In all cases J; = O corresponds to the absence of
frustration.

. . . . . 24 6
24 spins, dimensionality of Hilbert space d = C{; >~ 2.7 - 10

Still possible to calculate ground state exactly
Training for K =0.01 d (small trial set)



Frustrations and complexity: Quantum case 111

Square lattice Triangular lattice Kagome lattice
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Fig. 2 Optimization results for 24-site clusters obtained with supervised learning and stochastic reconfiguration. Subfigures a-c were obtained using
supervised learning of the sign structure. Overlap of the variational wave function with the exact ground state is shown as function of J;/J; for square a,
triangular b, and Kagome ¢ lattices. Overlap was computed on the test dataset (not included into training and validation datasets). Note that generalization
is poor in the frustrated regions (which are shaded on the plots). 1-layer dense, 2-layer dense, and convolutional neural network (CNN) architectures are
described in Supplementary Mote 1. Subfigures d-f show overlap between the variational wave function optimized using Stochastic Reconfiguration and the
exact ground state for square, triangular, and Kagome lattices, respectively. Variational wave function was represented by two two-layer dense networks. A
correlation between generalization quality and accuracy of the SR method is evident. On this figure, as well as on all the subsequent ones (both in the main
text and Supplementary Notes 1 and 2), error bars represent standard error (SE) obtained by repeating simulations multiple times.



Frustrations and complexity: Quantum case IV
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Fig. 4 Generalization of signs and amplitudes. \We compare generalization
quality as measured by overlap for learning the sign structure (red circles)
and amplitude structure (green squares) for 24-site Kagome lattice for
two-layer dense architecture. Note that both curves decrease in the
frustrated region, but the sign structure is much harder to learn.

It is sign structure

which is difficult to

learn in frustrated
case!!!

Relation to sign
problem in QMC?!

"Somehow it seems to fill my head with ideas —only I don't exactly know
what they are!” (Through the Looking-Glass, and What Alice Found There)



Further development

Many-body quantum sign structures as non-glassy Ising models
Tom Westerhout, Mikhail I. Katsnelson, Andrey A. Bagrov

Communications Physics volume 6, Article number: 275 (2023)

The idea: use machine learning to find amplitudes and then
map onto efficient Ising model

Was) = ;'Fﬂ*si} = ZS;WI'”SJ

When amplitudes are known the trial ground state energy < ¥|H|¥ >

is a bilinear function of signs s, and

- -

: . : : a) b) .-l e

K-dimensional space; K is very big but e ¥
\ |'T1n> PO l\'
o ©

we have Ising optimization problem n

it turns out
that the model 1s not glassy and can be

optimized without too SRR o
Real lattice Hilbert space Ising model

serious problems


https://www.nature.com/commsphys

Probability that the
coupling is not frustrated

Further development 11
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It turns out that even for initially
frustrated quantum spin models
the effective Ising model 1s not

frustrated, both couplings are small
and optimization is quite
efficient



Sign overlap

Further development I11
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The quality of optimization is quite
robust with respect to uncertainties
in amplitudes (overlap with the exact
ground state)



Toward a theory of evolution as multilevel learning

Analogies with biological evolution?

Vitaly Vanchurin®®', Yuri I. Wolf*@, Mikhail I. Katsnelson®(, and Eugene V. Koonin®'

Thermodynamics of evolution and the origin of life

Vitaly Vanchurin®", Yuri I. Wolf*©, Eugene V. Koonin®', and Mikhail 1. Katsnelson®’

PNAS 2022 Vol. 119 No. 6 2120037119

PNAS 2022 Vol. 119 No. 6 €2120042119

Table 1. Corresponding quantities in thermodynamics, machine learning, and evolutionary biology
Thermodynamics Machine learning Evolutionary biology
X Microscopic physical degrees of Variables describing training Variables describing environment
freedom dataset (nontrainable
variables)
q Generalized coordinates (e.g., Weight matrix and bias vector Trainable variables (genotype,
volume) (trainable variables) phenotype)
H(x,q) Energy Loss function Additive fitness,
H(x,q) = —-Tlogf(q)
5(q) Entropy of physical system Entropy of nontrainable variables Entropy of biological system
U(q) Internal energy Average loss function Average additive fitness
Z(T,q) Partition function Partition function Macroscopic fitness
F(T,q) Helmholtz free energy Free energy Adaptive potential (macroscopic
additive fitness)
Q(T, u) Grand potential, Q, (7, .#%) Grand potential Grand potential, Qy (T, i)
TorT Physical temperature, .7 Temperature Evolutionary temperature, T
U or . i Chemical potential, .# Absent in conventional machine Evolutionary potential, p
learning
Ne or N Number of molecules, N Number of neurons, N Effective population size, Ne
K Absent in conventional physics Number of trainable variables Number of adaptable variables

Energy landscape in physics 1s

similar to fitness landscape in biology



Analogies with biological evolution 11

Can the change of e.g. biological temperature switch fitness landscape
from a few well-defined peaks to a glassy-like with many directions of
possible evolution?

Australian Journal of Zoology

Explainin o the Cambrian  brdxdlowio.0712013052

“Explusmﬂ” of Animals The evolution of morphogenetic fitness landscapes:
conceptualising the interplay between the developmental

Charles R. Marshall and ecological drivers of morphological innovation

Annu. Rev. Earth Planet. Sci.

2006. 34:355-84 Charles R. Marshall

Cambrian Exposion as an analog of magnetic phase transitions
in neodymium?!

Well... for me (as a physicist) it is a good place to stop



What remains beyond the talk (examples)?

Complexity in metallurgy, interplay of magnetism
and structural state in steel

PHYSICAL REVIEW B 90, 094101 (2014) PHYSICAL REVIEW APPLIED 7, 014002 (2017)

Role of magnetic degrees of freedom in a scenario of phase transformations in steel
Autocatalytic Mechanism of Pearlite Transformation in Steel

4

I. K. Razumov, - V. Boukhvalov,® M. V. Petrik,? V. N, Urtsev,* A. V. Shmakov.,*
I.

"D.
elson. nostyrev!:2 2, I 24 34
M. I. Katsnelson,® and Yu. N. Gornostyrev'- I. K. Razumov,"* Yu. N. Gnrnostyrev.' and M. . Katsnelson

Perspectives to use complex patterns for neuromorphic
computations etc. — e.g. adatoms at black P

ARTICLE
oPEN

An orbitally derived single-atom magnetic memory

Brian Kiraly', Alexander N. Rudenko'??, Werner M.J. van Weerdenburg', Daniel Wegner', LETTERS nature h 1
Mikhail I. Katsnelson' & Alexander A. Khajetoorians' https://dol.org/10.1038/541565-020-00838-4. nanotechno Ogy

M) Check for updates

PHYSICAL REVIEW LETTERS 128, 106801 (2022)

An atomic Boltzmann machine capable of
self-adaption

Gating Orbital Memory with an Atomic Donor Brian Kiraly'?, Elze J. Knol'?, Werner M. J. van Weerdenburg', Hilbert J. Kappen? and

Alexander A. Khajetoorians @™
Elze J. Knol. Brian Kiraly, Alexander N. Rudenko®, Werner M. J. van Weerdenburg®,

Mikhail I. Katsnelson®, and Alexander A. Khajetoorians

MANY THANKS FOR YOUR
ATTENTION
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