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Electronic states and quantum transport in bilayer graphene Sierpinski-carpet fractals
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We construct Sierpinski carpets (SCs) based on AA or AB bilayer graphene using atom vacancies, which
we denote SC-AA and SC-AB, to investigate the effects of interlayer coupling on the electronic properties
of fractals. Compared with monolayer graphene SCs, their densities of states have similar features, such as
Van Hove singularities and edge states corresponding to the central peaks near zero energy, but remarkable
energy broadening of edge states emerges in SC-AA and SC-AB. The calculated conductance spectrum shows
that the conductance fluctuations still retain the Hausdorff fractal dimension behavior even with the interlayer
coupling. Thus, the high correlation between quantum conductance and the fractal geometry dimension is not
affected by the interlayer coupling in bilayer graphene SCs. We further reveal the quasieigenstates in fractal-like
pressure-modulated bilayer graphene, denote SC-pAA and SC-pAB. Numerical results show that the density of
states of SC-pAA (SC-pAB) shows an asymptotic behavior compared to that of SC-AA (SC-AB), especially for
high-energy quasieigenstates. Within a certain energy range, stronger pressure can lead to stronger localization,
forming an efficient fractal space.

DOI: 10.1103/PhysRevB.109.235429

I. INTRODUCTION

A fractal is a unique structure with fascinating self-
similarity and a noninteger Hausdorff dimension dH [1–4].
The two intrinsic characteristics of this unconventional
system enable exotic and interesting physical features in
electronic energy spectrum statistics [5–9], quantum trans-
port [10–16], plasmons [17], flat bands [18–21], topological
phases [22–29], enhanced superconductivity [30], and the
modified superarea law of entanglement entropy [31]. Exper-
imentally, nanoscale fractals, such as Sierpinski carpets (SCs)
and Sierpinski gaskets, are mainly created using bottom-up
nanofabrication methods, including molecular self-assembly
[32–38], chemical reactions [39], template packing [40], and
atomic manipulations in a scanning tunneling microscope
[41–43]. Recently, SC photonic lattices were also created to
investigate photon evolution [44]. Top-down external field
modulation is another feasible method for generating large-
scale fractal structures. Especially, the graphene lattice can
much more easily form an effective fractional dimension with
a small electric field compared with square lattice materials
[11]. In addition, there are some unique physical proper-
ties in graphene fractal systems. For instance, the geometry
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dimension of a monolayer graphene SC is characterized by
quantum conductance fluctuations [10,11]. In addition, the
eigenstates of graphene fractals exhibit various localized dis-
tributions in real space, and the edge states induced by
zigzag terminations are localized at the hole boundaries of
the graphene SC, forming a special state distribution [11].
In functionalized graphene SCs, there are two special energy
windows where holes are mainly located inside the functional-
ized region and electrons are mainly located inside the fractal
region [12].

Different from the electronic structure of monolayer
graphene, bilayer graphene with AA or AB stacking has
a parabolic dispersion in the low-energy range owing to
interlayer coupling. Recent theoretical calculations and ex-
perimental research showed that external vertical pressure can
enhance the interlayer coupling and change the physical prop-
erties of few-layer graphene, such as the electronic structure
[45–49], Raman spectrum [48–51], magnetism [52–54], phase
transition [54–56], and superconductivity [57]. Especially, it
has been proved that the interlayer interactions in certain
regions can be controlled by locally modifying the interlayer
separation by applying pressure from a scanning tunneling
microscopy tip [47]. As a natural extension of graphene
fractals, we want to know how the electronic states and
quantum transports are in bilayer graphene Sierpinski-carpet
fractals formed by atom vacancies, which we denote SC-AA
and SC-AB. Owing to the high tunability of the interlayer
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FIG. 1. (a) Schematic diagram of an AA- or AB-stacked graphene SC sample generated by atom vacancies with iteration number
I = 2 and square width W = 32.5a, with a being the lattice constant of graphene. (b) Schematic diagram of an AA- or AB-stacked
graphene SC sample generated by local pressure modulations. Here, the dark region is called area II (pressure region), and the light region
is called area I (fractal space). The atomic structures of AA- and AB-stacked bilayer graphene are shown in (c) and (d), respectively.
Different position configurations of the leads, called central and diagonal leads, are applied to the sample for calculations of quantum
conductance.

coupling by pressure, we further want to ask what the elec-
tronic states are like in fractal-like pressure-modulated AA
and AB bilayer graphene (denoted SC-pAA and SC-pAB,
respectively) and what the difference is among the four types
of bilayer graphene fractals.

In this work, we investigate the electronic states and
quantum conductance fluctuations in SC-AA and SC-AB. Re-
markable energy broadening of quasieigenstates around zero
energy as edge states is observed in the calculated results for
the density of states (DOS) and real-space distributions of
the probability density. The quantum conductance fluctuations
keep the Hausdorff fractal dimension behavior similar to that
of monolayer graphene fractals, even in the presence of inter-
layer coupling in bilayer graphene fractals. We also reveal the
electronic states in pressure-modulated bilayer graphene frac-
tals, including the SC-pAA and SC-pAB structures. The DOS
results for SC-pAA (SC-pAB), especially for high-energy
quasieigenstates, show behavior asymptotic to that of SC-AA
(SC-AB) as pressure increases. Our analyses of real-space
distributions of the normalized probability density also verify
the DOS results. Moreover, within a certain pressure range,
stronger pressure can lead to stronger localization, forming a
more efficient fractal space in SC-pAA and SC-pAB. How-
ever, even for these high-energy quasieigenstates, their DOS
in SC-pAA (SC-pAB) cannot exactly replicate the same spec-
trum as SC-AA (SC-AB) within the experimental pressure
range.

This paper is organized as follows. In Sec. II, we describe
the tight-binding model and provide the details of the applied
numerical methods. In Sec. III, we perform the calculations
and show the results for electronic properties and quan-
tum transport for SC-AA, SC-AB, SC-pAA, and SC-pAB,

including the density of states, quasieigenstates, quantum
conductance, and box-counting analysis of the conductance
fluctuation. A brief summary is given in Sec. IV.

II. MODEL AND METHODS

We investigate two types of bilayer graphene SC structures:
(1) the first type is generated by atom vacancies, as shown
in Figs. 1(a), and (2) the second type is formed by external
pressure modulation, as depicted in Fig. 1(b). For conve-
nience, we label the AA- (AB-) stacked graphene SC formed
by atom vacancies as SC-AA (SC-AB) and the AA- (AB-)
stacked graphene SC with pressure as SC-pAA (SC-pAB).
The structural parameters used in Fig. 1 are listed here. I = 2
is the iteration number, and W = 32.5a is the sample width,
with a = 2.46 Å being the lattice constant of graphene. When
SC changes from the Ith iteration to the (I + 1)th iteration,
the unit is replicated with an N = 8 times larger area and
L = 3 times larger width. The Hausdorff dimension is defined
as dH ≡ logL N � 1.89.

The behaviors of electrons and holes in these SC systems
are governed by the following tight-binding Hamiltonian:

H = −
∑

α

∑
i, j

tα,i jc
†
i c j +

∑
i

εic
†
i ci, (1)

where εi is the on-site energy at the ith site. c†
i and c j are

creation and annihilation operators. ti j is the electron hopping
between the ith and jth sites, including intralayer (α = 0) and
interlayer (α = 1) hopping. This tight-binding Hamiltonian
is obtained from the maximally localized Wannier orbitals
[58,59]. The intralayer hopping energy up to third-nearest
neighbors for the graphene monolayer has values of −2.8922,
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FIG. 2. DOSs of SC-AA (AB) and pristine AA- (AB-) stacked graphene are shown in (a) and (e). DOSs of SC-pAA (SC-pAB) for varying
degrees of external pressure are shown for (b) and (f) 5 GPa, (c) and (g) 15 GPa, and (d) and (h) 30 GPa. The sample parameters are set as
W = 297.5a and I = 4.

0.2425, and −0.2656 eV, respectively. The interlayer hopping
is a function of both distance and orientation [59]:

tα=1,i j (r) = V0(r) + V3(r)[cos(3θ12 + cos(3θ21)]

+ V6(r)[cos(6θ12) + cos(6θ21)], (2)

where the three terms originate from the different angular
momenta of the wave functions. r is the projection vector
connecting two sites in different layers. r = |r| denote the
projected distances. θ12 and θ21 are the angles between the
projected interlayer bonds and the in-plane nearest-neighbor
bonds. The three radial functions involving the 10 hopping
parameters in Table I are given by

TABLE I. The 10 hopping parameters in the interlayer coupling
model. All values are in units of eV and take the form in Eq. (5).

yi f (0)
i f (1)

i f (2)
i

λ0 0.310 −1.882 7.741
ξ0 1.750 −0.618 1.848
κ0 1.990 1.007 2.427
λ3 −0.068 0.399 −1.739
ξ3 3.286 −0.914 12.011
x3 0.500 0.322 0.908
λ6 −0.008 0.046 −0.183
ξ6 2.272 −0.721 −4.414
x6 1.217 0.027 −0.658
κ6 1.562 −0.371 −0.134

V0(r) = λ0e−ξ0 r̄2
cos (κ0r̄),

V3(r) = λ3r̄2e−ξ3(r̄−x3 )2
,

V6(r) = λ6e−ξ6(r̄−x6 )2
sin (κ6r̄), (3)

where r̄ = r/a. These formulas reflect how these radial func-
tions rely on the projected distance and the relative angle
between the interlayer vector and the monolayer plane. For
bilayer graphene, the interlayer compression is related to
the external pressure P. In the absence of significant recon-
figuration of bilayer graphene, the pressure created by the
compression from DFT calculations [60] is well fitted by
the following expression as a function of the compression
strain [46]:

P = A(e−Bη − 1), (4)

where η is the magnitude of the compression strain, defined
by η = h0−h

h0
, with h0 and h being the interlayer distances

for the uncompressed and compressed cases, respectively.
Here, the fitted parameters are given by A = 5.73 GPa and
B = 9.54 [60]. The vertical compression has a weak effect
on the intralayer hoppings but significantly enhances the in-
terlayer coupling. The 10 hopping parameters involving the
interlayer coupling in Eq. (3) are obtained through the follow-
ing quadratic fitting [60]:

yi(η) = f (0)
i − f (1)

i η + f (2)
i η2, (5)

where yi denotes an arbitrary choice of one of the 10 hopping
parameters with the coefficients f (0)

i , f (1)
i , and f (2)

i listed in
Table I [60].
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Since numerical calculations based on exact diagonaliza-
tion can treat only systems with a site number less than
10 000, we use the tight-binding propagation method (TBPM)
[61] to calculate the electronic properties for a large system
with millions of sites, including the density of states and
quasieigenstates (see the details given in the Appendix). We
start the evolution of a quantum system with a random initial
state |ϕ(0)〉, which is a normalized superposition of all basis
states

∑
n An|n〉. The DOS is calculated via Fourier transform

of the correlation function [61,62]:

D(E ) = 1

2π

∫ ∞

−∞
eiEt 〈ϕ(0)|e−iHt |ϕ(0)〉dt . (6)

After the Fourier transform of states at different times during
the evolution |ϕ(t )〉 = e−iHt |ϕ(0)〉, we obtain the quasieigen-
states |ψ (E )〉 by [61,63]

|ψ (E )〉 = 1

2π

∫ ∞

−∞
dteiEt |ϕ(t )〉

= 1

2π

∑
n

An

∫ ∞

−∞
dtei(E−En )t |n〉

=
∑

n

Anδ(E − En)|n〉, (7)

which can be further normalized as

|ψ (E )〉 = 1√∑
n |An|2δ(E − En)

∑
n

Anδ(E − En)|n〉. (8)

For the finite fractal structure, one can take an average us-
ing different realizations of random coefficients An to obtain
more accurate results for D(E ) and |ψ (E )〉. The numerical
implementation of the TBPM method is applied in TBPLAS

[64], which is an open-source package [65] for building and
solving tight-binding models, with an emphasis on handling
large systems.

For the transport properties, we adopt the quantum trans-
port simulator KWANT to perform the numerical calculations
[66]. In KWANT, the system considered is treated as a scatter-
ing region. The scattering matrix Si j and the wave function
inside the scattering region φS

n are the main raw output. They
are calculated by matching the wave function in the lead to the
wave function in the scattering region. After Si j is obtained,
the quantum conductance Gab = dIa/dVb can be calculated
using the Landauer formula:

Gab = e2

h

∑
i∈a, j∈b

|Si j |2, (9)

where a and b are two electrodes.

III. RESULTS AND DISCUSSION

A. Density of states

If the iteration number of the fractal reaches a certain num-
ber, the fine structure of the fractal is completely revealed, and
the distribution of electronic states changes little. Our previ-
ous numerical results [11,12] showed that the fourth iteration,
I = 4, for a monolayer graphene SC is enough for the conver-
gence of DOS calculations. The number of sites (∼410 048
sites) for SC-AA and SC-AB is twice that for monolayer

graphene SC, and hence, we only need to average a small
number of initial states within the TBPM method to explore
the electronic and transport characteristics of SC-AA and SC-
AB for I = 4. The DOS of SC-AA as a function of energy is
shown in Fig. 2(a). We can see that, due to the existence of the
second- and third-nearest-neighbor hopping, the electron and
hole states are not symmetrical in the energy spectrum. Two
distinct Van Hove singularities appear around E = ±2.9 eV,
similar to those of SCs based on monolayer graphene. In fact,
the DOS spectrum of pristine AA-stacked graphene exhibits
four Van Hove singularities, while the formation of fractal
geometry caused by atomic vacancies leads to the merging
of every two adjacent Van Hove singularities into a single
peak, as shown in Fig. 2(a). In addition, the central peak
caused by edge states emerges due to the open boundaries.
However, compared with the monolayer graphene SC [12],
SC-AA exhibits an increased number of central peaks with an
obvious broadening. In Fig. 2(e), similar behavior is found in
the DOS for SC-AB. The energy width of the central peak
in SC-AB is also significantly enlarged. Here, we have used
the Fermi energy as the zero-energy reference point in the
calculation.

In order to investigate the behavior of electrons in fractal-
like pressure-modulated bilayer graphene, i.e., with area II
under pressure, we change the external pressure and examine
the change in the DOS. For SC-pAA under 5 GPa pressure, the
DOS is nearly identical to that of pristine AA-stacked bilayer
graphene, with its four Van Hove singularities [see Fig. 2(b)].
However, as the pressure increases, the two Van Hove points
gradually get close, and some small peaks appears around zero
energy. In the high-energy region, the DOS becomes more
chaotic like SC-AA, as shown by the red arrows in Figs. 2(c)
and 2(d). Therefore, as the applied pressure increases, the
pressurized area II acts as an insulating region preventing
electrons and holes from hopping from area I to area II.
Naively, as the pressure grows infinitely larger, area II will
gradually be isolated from the whole system, and it will act
like vacancies of SC-AA, so that the DOS will be not smooth.
Here, the maximum pressure applied during the DOS calcu-
lation is set to 30 GPa because there is no significant atomic
restructuring of the graphene bilayer under this pressure value
[60]. In experiments, the diamond-anvil cell can apply a high
pressure of up to 50 GPa to a suspended graphene bilayer
[67]. As shown in Figs. 2(f)–2(h), with increasing pressure,
the DOS of SC-pAB also undergoes similar changes. There is
a small peak at the zero-energy point of the energy spectrum,
and the DOS gradually becomes chaotic in the high-energy
region. However, compared with SC-pAA, SC-pAB shows
relatively lower sensitivity to pressure modulation. With the
increase in pressure, obvious changes in the DOS, including
the broadening and splitting of peaks near the Van Hove sin-
gularities, can be observed in SC-pAA. However, in SC-pAB,
even when the pressure reaches 30 GPa in Fig. 2(h), the DOS
of SC-pAB still has four peaks of Van Hove singularities.
Based on these results, we expect that the electronic states
of SC-pAA and SC-pAB will exhibit a fractal geometric dis-
tribution in some energy ranges, which will be confirmed in
following quasieigenstates (see Sec. III B). However, within
the considered pressure range, it cannot exactly replicate the
same spectrum as SC-AA or SC-AB because area II can be
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(a) (d)(c)(b)SC-AA E = -2.0 eV SC-AA E = -1.0 eV SC-AA E = 0 eV SC-AA E = 0.5 eV

(e) (h)(g)(f)SC-AB E = -2.0 eV SC-AB E = -1.0 eV SC-AB E = 0 eV SC-AB E = 0.5 eV

10�5

10�5

FIG. 3. The real-space distribution of quasieigenstates for SC-AA and SC-AB at (a) and (e) E = −2 eV, (b) and (f) E = −1 eV, (c) and
(g) E = 0 eV, and (d) and (h) E = 0.5 eV. The sample parameters are set to W = 297.5a and I = 4.

considered to have vacancies only if the pressure is infinite. In
particular, the rate of DOS change in SC-pAB with pressure
modulation is significantly slower than in SC-pAA.

B. Quasieigenstates

Using Eq. (7), we calculate the quasieigenstates of SC-
AA and SC-AB and plot the real-space distributions of their
probability densities in Fig. 3. We first discuss the probabil-
ity density distributions of high-energy states in SC-AA, for
example, the energy states at E = −2 eV and E = −1 eV in
Figs. 3(a) and 3(b). Their nonzero probability densities are
inside the fractal space (area I). Some electronic states at E =
−2 eV exhibit localization, and many electronic states for E =
−1 eV are localized at the edges of holes formed by atomic
vacancies. In fact, due to the existence of atomic vacancies,
electrons can be confined only in area I. For the zero-energy
states in Fig. 3(c), these nonzero probability densities are ob-
viously located at these zigzag terminations. In addition, these
edge state still exist even for energy at E = 0.5 eV in Fig. 3(d).
This manifests the enhanced broadening of zero-energy states
in bilayer graphene SCs, and it is consistent with the results
for the DOS in Fig. 2(a). Therefore, the central peaks around
E = 0 eV in Fig. 2(a) correspond to these edge states, and
such edge states are often caused by the zigzag edges of
the honeycomb lattice, where atomic vacancies break lattice
symmetry and induce the energy broadening. For SC-AB in
Figs. 3(e) and 3(f), we can also observe similar distribution for
high-energy states. The energy broadening of the central peak
also increases, as shown in the Figs. 3(g) and 3(h). Compared
with SC-AA, the nonzero probability densities at the Fermi
energy are not only distributed at the internal lattice edge but
also located at the top and bottom boundaries of the sample.

We next discuss the quasieigenstates of SC-pAA and
SC-pAB under different pressures. First, we sum over the
amplitudes of the normalized quasieigenstate in area I without

pressure, which can be a measure of the distributions in area
I. We call this quantity the occupation percentage O1. If O1

of area I for a given energy is 100%, the given energy state
is distributed only inside area I. In this case, the electron with
this energy is completely confined in the “fractal” region. On
the contrary, if O1 is zero, electrons are localized inside area
II; i.e., electrons have no access to any site in area I. For
the bilayer graphene SC considered in this paper, the sample
parameters are W = 297.5a and I = 4, and number of sites
is 410 048. The number of sites in area I (area II) accounts
for 62.40% (37.60%) of the entire system. If the occupation
number O1 is lower than 62.40%, the electrons are mainly
distributed in the pressure region. In Figs. 4(a) and 4(b), we
show the calculated occupation percentage O1 of quasieigen-
states under different pressures in the energy range from −2.5
to 2.5 eV. In SC-pAA, O1 retains a high value and forms a
platform with |E | > 1.8 eV, which means eigenstates at the
high energy are mainly distributed in area I. Starting at |E | =
1.8 eV, O1 begins to drop sharply, meaning that most of these
quasieigenstates exist in area II. Interestingly, here, the energy
value |E | = 1.8 eV corresponds exactly to the Van Hove sin-
gularities in the density of states of SC-pAA, which suggests
that the energy corresponding to the Van Hove singularity is
the distribution transition interval where the region occupied
by eigenstates begins to change. Furthermore, as the pressure
increases, the value of O1 becomes larger in the high-energy
region and smaller in the low-energy region, resulting in a
stronger localization of these states in corresponding energies.
This means that greater pressure can cause the electrons to
be distributed in the fractal-like space, i.e., area I. Near the
Fermi level, we can see small peaks in O1 due to the boundary
states at the top and bottom of area I in the SC-pAA sample
[see Fig. 5(c)]. In Fig. 4(b), we can see similar behaviors
of O1 in SC-pAB. Electrons are mainly distributed in area I
inside the high-energy range. However, although O1 begins
to drop sharply starting from the Van Hove singularity, the
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(a) (b)

function O2 =A1*exp(-P/P0) + A2

A1 12.23544± 0.48955

P0 12.876 ± 1.08519

A2 24.31623± 0.20478

(c) (d)

function O2 =A1*exp(-P/P0) + A2

A1 7.81261± 0.07804

P0 23.08225 ± 0.87522

A2 19.66067± 0.10523

FIG. 4. (a) and (b) The occupation percentage O1 of area I in SC-pAA and SC-pAB under different pressures and energies. (c) and (d) The
occupation percentage O2 of area II in SC-pAA and SC-pAB under different pressures at a single energy point (−1.8 and −2.0 eV). The
sample parameters are set to W = 297.5a and I = 4.

percentage of occupation of O1 in area I remains above 60%,
which means that electrons still occupy a relatively large
proportion of the fractal space. The peak around the Fermi

energy E = 0 eV represents the appearance of very strong
boundary states in SC-pAB [see Fig. 5(g)], which is different
from that in SC-pAA. We also plot the variation of O2 of area

(a) (d)(c)(b)SC-pAA E = -2.3 eV SC-pAA E = -1.8 eV SC-pAA E = -0.4 eV SC-pAA E = 1.8 eV

(e) (h)(g)(f)SC-pAB E = -2.3 eV SC-pAB E = -2.0 eV SC-pAB E = 0 eV SC-pAB E = 2.3 eV
10�5

10�5

FIG. 5. The real-space distribution of quasieigenstates for SC-pAA at a pressure of 30 GPa at (a) E = −2.3 eV, (b) E = −1.8 eV, (c)
E = −0.4 eV, and (d) E = 1.8 eV. The real-space distribution of quasieigenstates for SC-pAB at a pressure of 30 GPa at (a) E = −2.3 eV,
(b) E = −2.0 eV, (c) E = 0 eV, and (d) E = 2.3 eV. The sample parameters are set to W = 297.5a and I = 4.
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II under different pressures for a fixed energy in Figs. 4(c)
and 4(d). Taking an energy near the Van Hove singularity
as an example, the value of O2 varies with pressure in an
exponential curve distribution. This means that as the pressure
increases the change of O2 will gradually decrease.

For visualization, taking 30 GPa as an example, the real-
space distributions of their quasieigenstates at several energies
are shown in Fig. 5. For a high energy for SC-pAA in Fig. 5(a),
the electrons are mainly distributed inside area I, suggesting
that the electrons can be confined in fractal space. Even in
the case of the transition energy, i.e., around the Van Hove
singularity, the distribution remains in area I, as shown in
Figs. 5(b) and 5(d). In contrast, for the low-energy region, we
can see that the eigenstate is localized in area II in Fig. 5(c),
and the localized boundary states at the top and bottom of the
sample also manifest, which means that the electrons at the
Fermi energy cannot enter the fractal space and are confined in
the pressured region. Therefore, the pressure region cannot be
regarded as vacancies in the low-energy region if the external
pressure is infinite, and it is valid only in a high-energy region
larger than the Van Hove singularities. A similar phenomenon
also appears in SC-pAB, as shown in Figs. 5(e) and 5(f).
At the Fermi energy, we can see these very strong boundary
states at the top and bottom of the sample, and there is also a
certain localization of electronic states in area II even though
O1 is very large, as shown in Fig. 5(g). This also proves the
central peak in Fig. 4(b). For the transition energy point of
E = 2.3 eV in Fig. 5(h), we can also see that the eigenstates
are mainly distributed in area I, and the proportion of distribu-
tion in area II is not small.

Based on these results, we conclude that the distribution
of quasieigenstates in SC-AA nd SC-AB can confirm the
energy broadening of central peaks in the energy spectrum in-
creases. For fractal-like pressure-modulated bilayer graphene,
the high-energy state localizes fractal space (area I) and can
be regarded as vacancies if pressure is infinite. In the low-
energy region, the electronic state of SC-pAB in area I still
occupies a large proportion compared with that of SC-pAA,
and the zero-energy position shows a very strong boundary
state. Within a certain range, stronger pressure can lead to
stronger localization, forming a more efficient fractal space.

C. Quantum transport

In graphene SC systems, the geometry dimension can be
revealed by the quantum conductance fluctuations by virtue
of a box-counting (BC) method, i.e., the BC dimension of
the quantum conductance fluctuations reflecting the Hausdorff
dimension [10–12], which is the most prominent transport
characteristic that other fractals do not have. However, for
bilayer graphene fractals (SC-AA and SC-AB), the interlayer
coupling may affect the quantum conductance fluctuations,
and hence, it is meaningful to discuss whether the correlation
between the BC dimension and the Hausdorff dimension still
exists.

The calculation of quantum conductance is implemented
in the KWANT software by the Landauer formula of the scat-
tering theory. The numerical value of the conductance can
be changed by the number, position, and width of the elec-
trodes [10,11]. We discuss the quantum conductance under

FIG. 6. The conductance G(E ) (in units of e2/h) of (a) and
(b) SC-AA and (c) and (d) SC-AB as a function of energy for central
and diagonal lead positions, where lead width is 4.15a. The sample
parameters are set to I = 4 and W = 297.5a.

two different lead position configurations, called the center
leads (i.e., two leads are attached to the centers of the left
and right sides of the sample) and the diagonal leads (i.e.,
one lead is attached to the bottom of one side and one lead is
attached to the top of the other side), as shown in Fig. 1. The
calculated quantum conductance spectra G(E ) of SC-AA and
SC-AB with different lead configurations are shown in Fig. 6.
The conductance calculations for SC-pAA and SC-pAB are
not performed since the matrix dimension in SC-pAA and
SC-pAB exceed the computational limits of KWANT.

In monolayer graphene SCs, there is a remarkable conduc-
tance gap in the central part of G(E ) where the conductance
vanishes, which is a hallmark of electronic transport in SC
fractals based on monolayer graphene [10–12]. However, in
SC-AA and SC-AB based on bilayer graphene, several mi-
nor conductance peaks exist inside the low-energy region
in Figs. 6(a)–6(c) because of the broadening of the cen-
tral peaks near zero energy. The lead configurations also
have remarkably different effects on the conductance inside
the low-energy region. For the center lead case, the conduc-
tance gap almost vanishes, while a conductance gap exists,
especially for SC-AB in Fig. 6(d) for the diagonal lead
case.

Beyond the low-energy region, these conductance spec-
tra contain many fluctuations, making the curve quite noisy.
The fluctuations can be characterized by the dimension
of the whole conductance spectrum, which can be obtained
with the box-counting algorithm [68]. It is a pixel-based
method, and the core of this algorithm is to cover the data
points by boxes with a size r. The number of boxes N depends
on the size of r, and when d = − log10(N )/ log10(r) changes
linearly, the value of d is called the BC dimension. In this
situation, d is the slope of the function log10 N[− log10(r)],
and the region where d change linearly is also called the
scaling region. Actually, there are two other regions that have
been dropped in the BC algorithm. For large values of r, where
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FIG. 7. Box-counting algorithm analysis of the conductance
fluctuations for SC-AA and SC-AB in Fig. 6.

− log10(r) is around zero, the box is too large to grasp the
features of quantum conductance fluctuations, and for very
small r, each box covers only one data point due to the very
small size, so that N does not increase anymore and turns
into a plateau. In Fig. 7, we show the numerical results for
the BC algorithm for SC-AA and SC-AB. We consider the
position effects of leads on the conductance spectrum and
extract the BC dimension. For SC-AA (SC-AB), the val-
ues of the BC dimension are d� = 1.88082 (d	 = 1.87365)
and d© = 1.87895 (d� = 1.87338) in the central and diag-
onal lead configurations, respectively. Surprisingly, the BC
results in the SC based on bilayer graphene are very close
to the Hausdorff dimension dH = 1.89. We can further infer
that the slight difference between the box-counting dimen-
sion and the Hausdorff dimension will vanish if the iteration
number is infinite. This means that the correlation between
quantum conductance and the geometry dimension remains in
spite of the existing interlayer coupling in bilayer graphene
SCs.

IV. SUMMARY

We investigated the DOS and quasieigenstates in SC-AA,
SC-AB, SC-pAA, and SC-pAB structures and the quantum
conductance fluctuations in SC-AA and SC-AB. The DOS re-
sults for SC-AA and SC-AB indicate larger energy broadening
of the edge states compared with that of monolayer graphene
SCs, and the DOS of SC-pAA (SC-pAB) in the high-energy
region gradually become similar to that of SC-AA (SC-AB)
as pressure increases, but it cannot exactly replicate the same
spectrum as SC-AA (SC-AB) within the experimental pres-
sure range. The analyses of real-space distributions of the
normalized probability density for quasieigenstates also ver-
ified the DOS results. In SC-pAA, quasieigenstates around
the zero energy are mainly localized inside area II, and the
states inside the high-energy range are dispersed in fractal
space (area I). In SC-pAB, the electronic state of area I in the
low-energy region still occupies a large proportion compared
with that of SC-pAA, and the zero-energy position shows a

very strong boundary state. By summing over the amplitudes
of the normalized quasieigenstates in area I (i.e., occupation
percentage), we found that within a certain pressure range,
stronger pressure can lead to stronger localization, forming
an efficient fractal space for high-energy quasieigenstates. We
calculated the conductance spectrum in SC-AA and SC-AB
and found that the quantum conductance fluctuations still fol-
low the Hausdorff fractal dimension behavior. Thus, the high
correlation between quantum conductance and the geometry
dimension is not affected in bilayer graphene SCs in spite
of the interlayer coupling. Based on this, it may be possible
to characterize the geometric dimension of the graphene SC
fractal experimentally by measuring the conductance in the
future.
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APPENDIX: TBPM

The TBPM is based on the numerical solution of the
time-dependent Schrödinger equation (TDSE) with averaging
over the random superposition of the basis states [61]. The
numerical solution of the TDSE is carried out by using the
Chebyshev polynomial algorithm. Taking the calculation of
the DOS in Eq. (6) as an example, we show the detailed steps
for the time-dependent evolution e−iHt |ϕ(0)〉 as follows.

Assuming x ∈ [−1, 1], e−izx is expanded as

e−izx = J0(z) + 2
∞∑

m=1

(−i)mJm(z)Tm(x), (A1)

where Jm(z) is the Bessel function with order m and Tm(x) =
cos [m arccos (x)] is the Chebyshev polynomial of the first
kind. Tm(x) obeys the following recurrence relation:

Tm+1(x) + Tm−1(x) = 2xTm(x). (A2)

As the Hamiltonian H has a complete set of eigenvectors
|n〉 with real-valued eigenvalues En, we can expand the wave
function |ϕ(0)〉 as a superposition of the eigenstates |n〉,

|ϕ(0)〉 =
N∑

n=1

|n〉〈n|ϕ(0)〉, (A3)

and have

|ϕ(t )〉 = e−itH |ϕ(0)〉 =
N∑

n=1

e−itEn |n〉〈n|ϕ(0)〉. (A4)
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Taking monolayer graphene as an example, with the nearest-
neighbor hopping t , the next-neighbor hopping t ′, and the on-
site potential v, after using the inequality∥∥∥∥

∑
Xn

∥∥∥∥ �
∑

‖Xn‖, (A5)

we find that

‖H‖b ≡ 3tmax + 6t ′
max + |v|max � max{En}. (A6)

Introducing t̂ ≡ t‖H‖b and Ên ≡ En/‖H‖b, where Ên are the
eigenvalues of a modified Hamiltonian Ĥ ≡ H/‖H‖b, we
have

Ĥ |En〉 = Ên|En〉. (A7)

By using Eq. (A1), the time evolution of |ϕ(t )〉 can be
represented as

|ϕ(t )〉 =
[

J0(t̂ )T̂0(Ĥ ) + 2
∞∑

m=1

Jm(t̂ )T̂m(Ĥ )

]
|ϕ(0)〉, (A8)

where the modified Chebyshev polynomial T̂m(Ên) is

T̂m(Ên) = (−i)mTm(Ên), (A9)

which obeys the recurrence relation

T̂m+1(Ĥ )|ϕ〉 = −2iĤ T̂m(Ĥ )|ϕ〉 + T̂m−1(Ĥ )|ϕ〉, (A10)

T̂0(Ĥ )|ϕ〉 = I|ϕ〉, (A11)

T̂1Ĥ |ϕ〉 = −iĤ |ϕ〉. (A12)

In this respect, we do not need to diagonalize the Hamiltonian
matrix but do need to multiply the matrix repeatedly. The
Chebyshev polynomial algorithm is very effective for simulat-
ing large systems. In addition, the Fourier transform in Eq. (6)
is adopted by the fast Fourier transformation in TBPLAS, which
greatly increases the computational efficiency.
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