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Wave functions in the critical phase: A planar Sierpiński fractal lattice
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Electronic states play a crucial role in many quantum systems of moiré superlattices, quasicrystals, and
fractals. As recently reported for Sierpiński lattices [Yao et al., Phys. Rev. B 107, 115424 (2023)], the critical
states are revealed by the energy-level-correlation spectra, which are caused by the interplay between aperiodicity
and determined self-similarity characters. In the case of the Sierpiński carpet, our results further demonstrate
that there is some degree of spatial overlap between these electronic states. These states could be strongly
affected by the “seed lattice” of the generator and slightly modulated by the dilation pattern and the geometrical
self-similarity level. These electronic states are made multifractal by scaling the qth-order inverse participation
ratio or fractal dimension, which correlates with the subdiffusion behavior. In the gene pattern, an average
state-based multifractal dimension of second order would increase as its Hausdorff dimension increases. Our
findings could potentially contribute to understanding quantum transports and single-particle quantum dynamics
in fractals.

DOI: 10.1103/PhysRevB.110.035403

I. INTRODUCTION

Translational invariance of atomic arrangement in crystals
leads to the band theory based on the Bloch theorem; the
Bloch character of electronic wave functions describes an
enormous number of properties of crystalline solids [1–5].
This symmetry is absent in randomly disordered systems
[6–8] as well as in incommensurate (quasiperiodic) systems
such as the one-dimensional (1D) Fibonacci chain [9], two-
dimensional Penrose tiling [10,11], Ammann-Beenker lattice
[12,13]), and hierarchical tiling of Sierpiński lattices [14–16]
and Koch fractals [17]. In all these cases tools dramatically
different from the band theory are required. In particular,
the concept of Anderson localization [18] is necessary to
understand the properties of disordered systems [6–8]. After
many years of efforts, we have well-developed mathematical
tools to describe this and related phenomena [19], and some
of these tools will be named below. The cases of regular
but not translationally invariant systems such as quasicrystals
and fractals are much less studied, and we are still far from
complete understanding of their electron properties.

To better study these aperiodic structures, many re-
searchers have developed various alternative theoretical meth-
ods, including the renormalization group technique [20–28],
transfer matrices [29–32], level-spectrum statistics [33] from

*These authors contributed equally to this work.
†Contact author: s.yuan@whu.edu.cn

random matrices theory [34,35], one-parameter scaling based
on studies of correlated length for coherent structures of dif-
ferent sizes [36,37] or localized length [38] in the Anderson
model [18,39], the state-based multifractality scaling [32],
studying transport properties [40–42], etc.

Following the above timeline, two key objects, namely, en-
ergy spectra [33–35] and wave functions in real space [36,37],
come into view that can be exploited to analyze electronic
[43–45] and phonon [46] systems. For instance, the wave
functions belong to one of three types: the characteristically
(Bloch) extended state [4] in periodicity-translation crystals;
the typically localized state [18] in systems with disorder
induced by impurities, defects, etc.; and a state behaving
in between that remains critical in several quasicrystals like
the Fibonacci chain [47], Thue-Morse lattice [48], and some
Penrose tilings [49]. In general, these can be distinguished
as follows: whereas the localized wave functions have an
exponentially localized envelope with |ψ (r)| ∼ exp(−αrβ ),
where α and β are the spatial parameters, the decay of the
critical states follows a power-law form with |ψ (r)| ∼ |r|−α

(or a more complicated envelope, e.g., localized edge states
in a ring shape [43] and critical states with the SKK form in
Penrose lattices [44]). Note that in the absence of disorder,
lattice frustration possibly induces the fragmented states (i.e.,
critical states) in quasicrystals and fractals; these states also
become more complex with various long-range orders.

Sierpiński carpets SC(n, m, g∗) as a class of frac-
tals [14,50–53], where (n, m) are the parameters of the
generator(n, m) and g∗ is the geometrical hierarchy level,
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FIG. 1. Schematic illustration of the SC(n, m, g∗) fractal lattices by a paradigmatic generator(4, 2) under the (a) self, (b) gene, and
(c) auxiliary vari patterns. Geometrical hierarchy level g∗ = 3. Energy spectra are symmetric about E = 0; hence, the upper half panel of
the energy spectra is considered, i.e., 0 � E � 4t . In the main panel in (a), (b), and (c), the fractal dimension Dψ

2 (ψ ) (red crosses, shown on
the left) of the wave function measures its degree of spatial extension in the whole lattice; the level leg E (black line in the middle) and density
of states ρσ (E ) (blue curve on the right) with a blurred energy width σ = 0.0056t [74] are also shown. Two extreme (minimum and maximum)
cases of Dψ

2 (ψ ) give four states, which are marked in blue with S1 and S3 (S2 and S4) in the top (bottom) right panels. The scaled probability
density Ar|ψEn (i)|2 maps into a color bar region from 0 to Ar.

resemble a periodic square lattice in two dimensions, whose
order of ramification is infinite. Experimentally, these fractal
objects can be accessed by arranging a waveguide tube [54]
and electric circuit [55] or printing acoustic lattices [56] in
desired fractal shapes [14,57]. In Ref. [58], we found that
when a single electron roams upon the SC(n, m, g∗) lattices,
all electronic states reside in the critical phase, which isolates
that near the mobility edge where Anderson transition occurs
[39]. This trait affects the observable properties of quantum
conductance (QC) [59] and QC-based box-counting dimen-
sions, plasmas [60], and Hall conductance [61], among others.

To obtain more insight into fractal lattices, we focus on
probing the spatial envelope of electronic states, rather than
the nearest energy-correlation spectra. Two aspects are stud-
ied: (1) the state envelope in these SC(n, m, g∗) lattices at
various energy bands and (2) how other factors, such as the
generator(n, m), dilation pattern, fractal dimension DH , and
geometrical hierarchy level g∗, affect the critical states (CSs).
Critical states are potentially crucial for further investigating
the disorder-induced localization [62] and many-body corre-
lation effect [63] in Sierpiński fractal lattices.

The rest of this paper is organized as follows. In Sec. II, we
introduce the single-electron gas model on the SC(n, m, g∗)
lattices and the state-based multifractality analysis. Our re-
sults are presented in Sec. III. For three lattice-dilation
patterns with SC(n, m, 3) lattices, the electronic states are
sketched by their density profile in Sec. III A, and their mul-
tifractal properties are shown in Sec. III B. A conclusion is
reached in Sec. IV.

II. LATTICE, MODEL, AND METHOD

Fractal lattices and model. First, we review the fractal
SC(n, m, g∗) lattices that we discussed previously (see Fig. 1
in Ref. [58]). Using the generator(n, m) and two illustra-
tions of the self and gene patterns (Mse and Mge), various

SC(n, m, g∗) lattices are dilated. Here, these two patterns are
our main interest, with the addition of the vari pattern, which
is a variation of the self pattern, for comparison. Second, a
noninteracting electron gas is confined in the SC(n, m, g∗)
lattices, which is modeled by

H = −t
∑
〈i, j〉

(c†
i c j + c†

j ci ) + V
∑

i

f (i)c†
i ci. (1)

The first term describes a single electron hopping between the
nearest-neighbor site pair 〈i, j〉. We set the strength t as the
energy unit. The on-site potential with strength V included
in the second term is tailored locally by the function f (i) in
the Anderson [18], Harper [64], Aubry or Aubry-André [65],
and Aubry-André-Harper [65,66] models. Third, for consis-
tency with Ref. [58], taking only the lattice topology effect
into account, we set V = 0. The results of the level-spectrum
statistics indicate that the electronic states might be intermedi-
ately critical (in other words, they always partially occupy the
entire lattice, or the tail of the level-correlation spectra follows
the power-law trait). We further use this tool to quantify these
electronic states.

State-based multifractality analysis. For an arbitrary state
ψ , measuring its spatial extension in a lattice as a convenient
tactic can reveal some inherent traits, which are exploited
in studying the localization problem with several concepts
such as localization length [67,68], structural entropy [69,70],
participation ratio [70], and multifractality [32]. We adopt the
2q-norm multifractality [32] with the formula

χq(ψ,�) =
∑

i∈R |ψ (i)|2q

(∑
i∈R |ψ (i)|2)q , (2)

with χq(ψ,�) being the qth-order inverse participation ratio
(IPR), where � is the number of sites counted in region R.

To understand Eq. (2) well, we take three examples: (1)
One of the wave functions is evenly extended in the spatial
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lattice, i.e., ψ (r) = const; then we have χq(ψ,�) = �1−q,
with � being the lattice size. (2) Assuming ψ (r) have a
power-law-decay envelope with an exponent α, instead,

χq(ψ,�) �
⎧⎨
⎩

�−2(q−1) (0 � α < 1/q),
�−2q(1−α) (1/q � α < 1),
�0 (1 � α)

(3)

for q > 1. (3) The last example has an envelope of exponential
decay and an oscillation tail, namely, the localized state. If
the third state continues to degenerate highly and occupies
only several sites, we refer to it as the confined state. One
might imagine a state with a single occupied site, which would
obviously have χq(ψ,R) = 1. Note that χq(ψ,R) clearly
depends on the region �(R) one computes. Because different
states are associated with lattices of various sizes, it becomes
tricky to compare these electronic states directly.

However, using Dψ
q (ψ ) could avoid this issue. Since

the quantity χq(ψ,R) scales exponentially as R−(q−1)Dψ
q (ψ ),

which is linked the qth fractal dimension [71],

Dψ
q (ψ ) = lim

R→∞
−1

q − 1

log χq(ψ (i),R)
log �(R)

. (4)

In general, the second-order quantities of q = 2 demarcate the
extended (localized) state with χ2(ψ ) = �−1 and Dψ

2 (ψ ) = 1
[χ2(ψ ) � 1 and Dψ

2 (ψ ) � 0]. There is a special situation
where our observed values are in between, leading the system
to a critical state. This can happen in two scenarios. One
is near the mobility edge when Anderson transition occurs
[72,73]. The other scenario is found in quasicrystals [32],
where geometric frustration plays a role. In both cases, the
electronic states are spatially fragmented differently.

Our work mainly explores the CSs within fractals. It is
interesting to note that when two CSs are close in char-
acteristics, we can spot the differences between them by
measuring the IPR χq(ψ,R) and the state-based fractal di-
mension Dψ

q (ψ ), especially when using a higher value of
q. This aspect becomes crucial when we observe the vast
clustering of CSs in the spectra of Dψ

q (ψ ).

III. RESULTS AND DISCUSSION

In this section, we study the critical states from differ-
ent perspectives. These include (1) examining their density
profile, which helps us understand how the wave function
occupies the entire fractal lattice, akin to analyzing the IPR,
and (2) investigating the multifractality scaling (fractal dimen-
sion), which is related to the subdiffusion behaviors and can
be observed by the dynamical evolutions in larger fractals.

A. The density profile on three SC(n, m, 3) lattices

To highlight how the CSs in fractal lattices are distinct from
the other two types of states (extended and localized), we start
by examining their spatial density profiles. We demonstrate
this using three examples of SC(4, 2, g∗ = 3) lattices. These
lattices are designed sequentially following specific patterns:
the self pattern, with a matrix Mse = [1 1 1; 1 0 1; 1 1 1]; the
gene pattern, with Mge = [1 1 1 1; 1 0 0 1; 1 0 0 1; 1 1 1 1];
and the vari pattern, a variation of the self pattern, with

Mva = [1 0 0; 0 0 1; 1 1 0]. Note that in the Mge pattern, 1
means that the seed lattice of the generator(n, m) is filled;
otherwise, it is not filled. The other two patterns are similar.
The first two patterns (Mse and Mge) are our primary focus,
and the third one serves as a variant to emphasize the potential
enhancement effect of local energy clusters (refer to Fig. S1
in our previous work [58]).

The level leg in Fig. 1 demonstrates that several critical
states form a subband cluster, influenced by specific param-
eters such as the generator(n, m), the geometrical hierarchy
level g∗, and the dilation patterns represented by matrices Mse

and Mge. This formation is discussed further in Ref. [58].
Moreover, the clustering degree of these levels is quantified
using the density of states ρσ (E ) [74], where variations in
the width and height of the peak indicate the presence of
quasidegenerate and degenerate states, respectively. Notably,
the self pattern exhibits a more pronounced level clustering.

Despite the energy level clustering, each subband pos-
sesses a detailed internal structure, which is particularly
noticeable at specific in-band positions and can be described
using multifractal energy spectra [32,75]. Instead of focusing
solely on these spectra, our analysis utilizes q-weight scaling
related to the wave function to examine the spatial differences
between any two states. The spatial density of these CSs is
illustrated using the scaled state density Ar|ψEn (i)|2, with the
scaling factor Ar corresponding to the lattice size.

Moreover, it must be stressed that a small energy-resolved
window δ (approximately 10−3t) is used to depict the states
within specific energy clusters accurately. This approach aver-
ages all states within the energy range En ± δ/2, highlighting
the (quasi)degenerate behavior in specific energy clusters.
At the same time, it is used for subdiffusion behavior [76],
such as benchmarking the autocorrelation function and mean-
square displacement of the critical states in different lattices
[77–80]. These tools, including the energy-correlation spec-
tra [58], are equivalent in capturing the energy spectra or
states in statistical views. Here, we analyze each state one
by one.

The second-order fractal dimension Dψ

2 (ψE ) for all states
in two SC(4, 2, 3) lattices, associated with the self and gene
patterns, typically ranges between 0.6 and 0.9. The propor-
tion of states within this range is 0.974 and 0.937 for these
two patterns, respectively. States outside this range are rare,
indicating that the wave functions are predominantly critical.
Figures 1(a) and 1(b) illustrate four eigenstates with extreme
values of Dψ

2 (ψE ), showcasing the characteristic of partial
occupancy in fractals and the spatial overlap between these
states.

The eigenstates labeled S1, S2, S3, and S4 exhibit a
semblance of approximate symmetry, likely resulting from
spontaneous symmetry breaking. This characteristic remains
consistent across various CSs and in different SC(n, m, g∗)
lattice configurations. However, these symmetrical traits in the
spatial wave function are not universally applicable to most
CSs, as evidenced by G4 in Fig. 3 below.

For the vari pattern, the fractal dimension Dψ

2 (ψE ) is
around 0.3, as shown in Fig. 1(c), which is notably low. This
anomaly is primarily attributed to the substantial number of
nonconnecting site subclusters scattered throughout the entire
lattice, which are dilated according to the vari pattern. This
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FIG. 2. The qth-order fractal dimension Dψ
q (ψE ) vs critical state ψE (i) at allowed eigenenergy E . In order to capture the impact of the

dilation pattern, we still use the generator(4, 2) as a case. Considering the geometrical hierarchy effect in Ref. [58], we modulate g∗ from 2 to
4 for (a)–(c) the self pattern and (d)–(f) the gene pattern. Here, q goes from 2 to 5.

structural feature reduces the connectivity and interference
across the lattice, resulting in the significantly lower fractal
dimension observed.

To make an analogy, we recall some electrical states in
quasicrystals [81]. First, taking the 1D Fibonacci chain [32]
case, some electronic states at the band center are self-similar
and critical, having ψm ∝ (1/N )αE (where αE is the exponent
index [47,82]). Second, the situations become different in
the Penrose lattice (space dimension D = 2); confined states
[83,84] and self-similar states [83] exist in special tiling
alignments. Third, in the Amman-Kramer lattice (D = 3), the
electronic states are also critical and show power-law decay
[85]. Dψ

q (ψE ) for electronic states in quasicrystals is less than
D/2; the value of D depends on the space dimension where the
quasicrystals are nested. Dψ

q (ψE ) is less than 1 in Sierpiński
fractals, and it is closer to the fractal dimension D. Addition-
ally, the quasicrystals are lacuna-free; however, the fractals
have lots of lacunae [86,87]. Hence, the typical power-law
character of some critical states is almost absent in fractals.

B. The multifractality analysis in the SC(n, m, g∗) lattices

For multifractal critical states, we can utilize the state-
based fractal dimension Dψ

q (ψE ) to characterize their dis-
tinctive features, notably how the value of Dψ

q (ψE ) varies
with the scaling parameter q [32,88–92]. Unless otherwise
specified in this paper, the entire fractal lattice (where Ar

denotes the fractal lattice size) is always considered; hence,
� = Ar is set. Generally, electronic states exhibit different
behaviors when a single electron is situated at various en-
ergy levels, resulting in Dψ

q (ψE ) being dependent on the
energy E , as depicted in Fig. 2. The hole-particle symmetry
further makes Dψ

q (ψE ) symmetric around E = 0 across the
entire spectrum of Dψ

q (ψE ). In the following, we study how
these CSs change with the geometrical hierarchy level g∗,
the two dilation types of the self and gene patterns, and the
generator(n, m). First, we assess the influence of the geo-
metric hierarchy level g∗, which is pivotal for self-similarity
objects. In Figs. 2(a)–2(c), we select the generator(4, 2) as
the case. In the self pattern, the q-weighted fractal dimen-
sion Dψ

q (ψ ) remains between 0.5 and 0.85 when g∗ = 2 in
Fig. 2(a); when g∗ increases to 3, Dψ

q (ψ ) undergoes slight
adjustments but generally stays within the same range, as
shown in Fig. 2(b). Concurrently, many CSs cluster closely
in the energy band and overlap within the spatial lattice, a
phenomenon induced by the level attraction effect of g∗. As
g∗ increases to 4, the maximum value we can simulate, the
profiles of Dψ

q (ψ ) in Fig. 2(c) resemble those at g∗ = 3.
We turn to the gene pattern, for which g∗ varies from

2 to 4, the entire span of Dψ
q (ψ ) narrows, and the distinct

subclusters become apparent [refer to Figs. 2(d)–2(f)]. This
effect is presumably due to the strong correlations between the
CSs, whose energy levels are closely aligned, possibly leading
to the anomalous level-spacing statistic P(s) [58].
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FIG. 3. The scaled state density profiles Ar|ψE (i)|2 for the six
center states closest to the band center are sequentially tagged as
S2 in the SC(4, 2, 2) lattice, S3 in the SC(4, 2, 3) lattice, and S4 in
the SC(4, 2, 4) lattice for the self pattern and G2 in the SC(4, 2, 2)
lattice, G3 in the SC(4, 2, 3) lattice, and G4 in the SC(4, 2, 4) lattice
for the gene pattern. To visualize these center states vividly, the above
six lattices are scaled in the same size. The scaled factor is the lattice
size Ar, and the color bar range maps from 0 to 1 (in units of Ar).

We further fix the value of g∗ to compare the influence of
dilation patterns on these critical states. With g∗ = 2, the spec-
tra of Dψ

q (ψ ) display identical contours, as seen in Figs. 2(a)
and 2(d), indicating that the generator(4, 2) plays a decisive
role in shaping the electronic profile within fractal lattices.
This behavior becomes more pronounced when increasing g∗
to 3 [Figs. 2(b) and 2(e)] or 4 [Figs. 2(c) and 2(f)]. It is
noteworthy that the overall fluctuation range of Dψ

q (ψ ) in the
six scenarios is predominantly influenced by the lattice size
Ar of SC(4, 2, g∗ = 2–4), where Ar is readily determined by
the perimeter-area law [15,58,93].

In the six scenarios mentioned above, we further analyze
six approximated center states in the energy band (specifically,
E � 0), labeled S2–S4 and G2–G4 in Fig. 3. These multi-
fractal critical states involve wave interference on a size scale
relative to the entire lattice. Five of these states (S2–S4 and
G2–G3) are nearly symmetrical, which might be attributed to
the disrupted translational symmetry and the discrete scaling
invariance. Moreover, it is essential to highlight that, due
to their unique structure, unlike in a Sierpiński gasket, the
diversity between the spatial bulk state and the boundary
state in these fractals is challenging, which was observed by
the Hall states [61] in fractals.

The Hausdorff dimension D is essential for fractal objects
and affects their quantum transport behaviors [59]. In our
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FIG. 4. Dψ
q (ψE ) vs critical state ψE (i) at allowed eigenenergy

E under the gene pattern. The impact of the generator(n, m) is com-
pared by taking (a) (5,3), (b) (4,2), (c) (3,1), and (d) (5,1) with g∗ = 3
remaining the same. Here, q is still from 2 to 5. Note that the average
〈Dψ

2 (ψ )〉 in the four cases is 0.7312, 0.7531, 0.8035, and 0.8621,
respectively.

study, Dse is influenced not only by the choice of (r, N )
but also by the generator(n, m) and geometrical hierarchy
level g∗; Dge is solely determined by its generator(n, m). If
we apply the perimeter-area law [15,93] to derive D, Dse

asymptotically follows Dse = log(N )/ log(r) in the self pat-
tern (considering a large value of g∗, r, and N ; refer to
Ref. [58]) and Dge = log(n2 − m2)/ log(n) in the gene pattern
[58]. Note that Dse is modulated only in large fractal lattices,
which makes simulation or experimental efforts difficult. We
now wish to demonstrate the impact of Dge; Dse is shown in
Appendix A.

Dge is generally varied by its generator(n, m), making it
easier to modulate in the case of a small g∗ value. We select
the sequences (5,3), (4,2), (3,1), and (5,1), resulting in Dge

gradually increasing from 1.7227 to 1.9746. In Fig. 4, we

FIG. 5. Like in Fig. 4, the impact of the generator(n, m) is com-
pared for the self pattern. Taking geometrical hierarchy level g∗ = 3,
(n, m) of (a) (5,3), (b) (4,2), (c) (3,1), and (d) (5,1) are shown. Here,
q is still from 2 to 5.
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FIG. 6. Four SC(4, 2, g∗) lattices in two dilation pattern. The
same seed lattice of the generator(4, 2) is used to construct
(a) SC(4, 2, 2) and (b) SC(4, 2, 3) in the self pattern and
(c) SC(4, 2, 2) and (d) SC(4, 2, 3) in the gene pattern.

set g∗ = 3; the spectra of Dge are significantly influenced
by the generator(n, m), as demonstrated in the four cases of
(5, 3), (4, 2), (3, 1), and (4,2). We consider all the CSs; the av-
erage 〈Dψ

2 (ψ )〉 for the four cases are 0.7312, 0.7531, 0.8035,
and 0.8621, respectively. It is evident that the increase in Dge

causes the transition from the critical state to the extended
state. There is a case in the SC(5, 1, 3) lattice, as we discussed
in Ref. [58], for a generator(n, m) with a large n and small m;
the expanding lattices under the gene pattern can be character-
ized as the translation-symmetry lattices with certain pointlike
or clusterlike defects. Consequently, their wave functions are
slightly extended, and Dge tends towards 1.

IV. SUMMARY

In summary, by scaling the inverse participation ratio and
visualizing the wave function profile, we have analyzed elec-
tronic critical states upon fractal SC(n, m, g∗) lattices that are
populated under two typical patterns: the self pattern and the
gene pattern. We have found that the critical states gener-
ally exhibit fragmentation behavior upon fractal SC(n, m, g∗)
lattices. Therefore, it causes the electronic states to behave
multicritically in fractals with Dψ

q (ψE ) less than 1. Note that
we ascribed the above confinement effects to the hierarchal
properties of the fractal structure. It could be observed by
the autocorrelation function C(t ) ∼ t−γ and the mean-square
displacement d2(t ) ∼ t δ , with the predictions (0 < γ < 1 and
0 < δ < 1) for these critical states in larger fractal lattices.
For the gene pattern and the self pattern that we focused on,
the fractal dimension Dψ

2 (ψE ) is consistently greater than 0.5,
which suggests that there is substantial spatial overlap among
these critical states.

In addition, these states had approximate symmetry when
we pinned their energy near zero. As we know, physical
states can be classified according to their transport properties.
The periodic Bloch functions describe conducting states in
crystalline systems, and localized states in insulating systems
exhibit exponential decaying. However, when discussing the

critical states, things get somewhat tricky. Generally speaking,
they show strong spatial fluctuations at different scales [94],
occasionally accompanied by oscillatory behavior, which is
evident in Sierpiński fractals. We also emphasize that in ape-
riodic lattices, many mechanisms possibly prevent the wave
function from decaying on large scales and from being con-
stant over the entire lattice. The following are some examples:
(1) For flux-threaded Koch fractals, under the action of the
commutation condition and special magnetic flux, ψ (ri) is
certainly extended when pinning its eigenvalue in a special
energy window [17]. (2) For the copper-mean chain [25] or
period-doubling chain [26], local cluster correlation causes
ψ (ri) to have a similar feature at some energy position,
and some critical wave functions tend to expand in the 1D
Fibonacci chain [29] and Thue-Morse lattice [48] due to
short-range atom correlation. (3) Both scale invariance and the
finite order of ramification cause some states to be somewhat
extended in a Sierpiński gasket [27,28].

The interesting thing is that spectra of Dψ
q (ψE ) are de-

terminedly modulated by the seed lattice of generator(n, m)
and change slightly with the geometrical hierarchy level g∗
and/or the dilation pattern. Additionally, the average fractal
dimension Dψ

2 (ψE ) will slightly increase with Dge.
Note that in comparing the observed properties in ir-

regular objects whose frontier is fractal-like, including the
strong location traits in fractal drums [95,96], rich coherence
of eigenwave functions is found in the Koch structure and
Koch snowflake [97]. Our work provides some insight into
the Sierpiński lattice. The spectra of energy level statistics
[58] and Dψ

2 (ψE ) could help with the understanding of the
transport properties [59], optical spectra [98], Hall conduc-
tivity [61], even superconductivity [63] in Sierpiński lattices.
At the same time, our work contributes to further study of
disordered-induced localization and even many-body local-
ization from the initial fractal-induced critical phase, and
similar studies [71,99] have been carried out for quasicrystals.
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APPENDIX A: THE SPECTRA OF Dψ
q (ψE )

IN THE SELF PATTERN

In the main text, our discussion primarily focused on the
gene pattern. This pattern is crucial for understanding the
behavior of a single electron in fractal lattices, particularly in
terms of the fractal dimensions and the localization properties
of the wave functions.

To complement this analysis, we include Fig. 5, which
shows the self pattern. Figure 5 illustrates how the spectra of
Dψ

q (ψE ) correlate with the critical states ψE (i) across differ-
ent configurations. By fixing the geometrical hierarchy level
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g∗, we vary the generator(n, m), and the overall sketch profile
of Dψ

q (ψE ) is modulated substantially [see Figs. 5(a)–5(d)].
Note that Dψ

q (ψE ) also reaches 0.9 in Fig. 5(d), which is due
to the finite-size effect. However, Dψ

q (ψE ) should decrease
when taking a large value of g∗; that is beyond the possible
simulation ability of our computation station.

APPENDIX B: CONSTRUCTING SIERPIŃSKI
CARPET SC(n, m, g∗) LATTICES

First, we need a “seed” lattice [we named it the
generator(n, m), and g∗ is geometric hierarchy level] and dila-
tion pattern, including the self pattern Mse and the gene pattern
Mge. Second, we construct the different types of SC(n, m, g∗)
lattices using

SC(n, m, g) = Mse,ge(g) ⊗ generator(n, m), (B1)

where g is the hierarchy level, with Mse,ge(g) ≡ Mse,ge(g −
1) ⊗ Mse,ge(1). Here, g is distinguished from g∗, which was
discussed in previous work [58]. In Fig. 1, SC(4, 2, 3∗) lattices
are constructed with the generator(4, 2) using three patterns
(the third pattern is the vari pattern, which is a variation
of the self pattern). Here, we focus on only the first two
patterns.

For the self pattern, comprising the SC(n, m, g∗ − 1)
lattice, the perimeter length of the SC(n, m, g∗) lattice
in the g∗th iteration increases r times, and its area
increases N times. For consistency with Ref. [58], suppose
Mse = [1, 1, 1; 1, 0, 1; 1, 1, 1] with r = 3 and N = 8 [see
Figs. 6(a) and 6(b)]. For the gene pattern, the pattern depends
on the seed lattice of the generator(4, 2), and we have Mge =
[1, 1, 1, 1; 1, 0, 0, 1; 1, 0, 0, 1; 1, 1, 1, 1] [see Figs. 6(c)
and 6(d)].
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